Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On hypersingular integrals and anisotropic Bessel potential spaces


Authors: H. Dappa and W. Trebels
Journal: Trans. Amer. Math. Soc. 286 (1984), 419-429
MSC: Primary 46E35; Secondary 42B15
DOI: https://doi.org/10.1090/S0002-9947-1984-0756046-2
MathSciNet review: 756046
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we characterize anisotropic potential spaces in terms of hypersingular integrals of mixed homogeneity with respect to a general dilation matrix.


References [Enhancements On Off] (What's this?)

  • [1] S. Chanillo, Hypersingular integrals and parabolic potentials, Trans. Amer. Math. Soc. 267 (1981), 531-547. MR 626488 (82k:46050)
  • [2] H. Dappa and W. Trebels, On $ {L^1}$-criteria for quasi-radial Fourier multipliers with applications to some anisotropic function spaces, Anal. Math. 9 (1983), 275-289. MR 744577 (86g:42025)
  • [3] J. Horváth, Composition of hypersingular integral operators, Applicable Anal. 7 (1977/78), 171-190. MR 0500133 (58:17830)
  • [4] P. I. Lizorkin, Nonisotropic Bessel potentials, imbedding theorems for Sobolev spaces $ L_p^{({r_1}, \ldots ,{r_n})}$ with fractional derivatives, Soviet Math. Dokl. 7 (1966), 1222-1226. MR 0203449 (34:3300)
  • [5] -, Description of the spaces $ L_p^r({{\mathbf{R}}^n})$ in terms of singular difference integrals, Math. USSR-Sb. 10 (1970), 77-89.
  • [6] W. Madych, On Littlewood-Paley functions, Studia Math. 50 (1974), 43-63. MR 0344797 (49:9536)
  • [7] V. A. Nogin, Inversion of the generalized Riesz potentials with the symbols that degenerate linearly on a hyperplane, Math. Notes 32 (1982), 637-642. MR 677601 (84h:31007)
  • [8] C. Sadosky and M. Cotlar, On quasi-homogeneous Bessel potential operators, Proc. Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1967, pp. 275-287. MR 0383156 (52:4037)
  • [9] S. G. Samko, Generalized Riesz potentials and hypersingular integrals, their symbols and inversion, Soviet Math. Dokl. 18 (1977), 97-101. MR 0450902 (56:9193)
  • [10] E. M. Stein, The characterization of functions arising as potentials. I, Bull. Amer. Math. Soc. 67 (1961), 102-104. MR 0123729 (23:A1051)
  • [11] -, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)
  • [12] E. M. Stein and S. Wainger, Problems in harmonic analysis related to the curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295. MR 508453 (80k:42023)
  • [13] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971. MR 0304972 (46:4102)
  • [14] A. Torchinsky, On spaces of Riesz potentials, preprint, Cornell University.
  • [15] R. L. Wheeden, On hypersingular integrals and Lebesgue spaces of differentiable functions. I, II, Trans. Amer. Math. Soc. 134 (1968), 421-136; 139 (1969), 37-53. MR 0232249 (38:575)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E35, 42B15

Retrieve articles in all journals with MSC: 46E35, 42B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0756046-2
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society