Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $ {\bf R}\sp{4}$


Author: Steven R. Dunbar
Journal: Trans. Amer. Math. Soc. 286 (1984), 557-594
MSC: Primary 35K57; Secondary 58F40, 92A15
MathSciNet review: 760975
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the existence of traveling wave solutions for a reaction-diffusion system based on the Lotka-Volterra differential equation model of a predator and prey interaction. The waves are of transition front type, analogous to the solutions discussed by Fisher and Kolmogorov et al. for a scalar reaction-diffusion equation. The waves discussed here are not necessarily monotone. There is a speed $ {c^\ast} > 0$ such that for $ c > {c^\ast}$ there is a traveling wave moving with speed $ c$. The proof uses a shooting argument based on the nonequivalence of a simply connected region and a nonsimply connected region together with a Liapunov function to guarantee the existence of the traveling wave solution. The traveling wave solution is equivalent to a heteroclinic orbit in $ 4$-dimensional phase space.


References [Enhancements On Off] (What's this?)

  • [1] P. L. Chow and W. C. Tam, Periodic and traveling wave solutions to Volterra-Lotka equations with diffusion, Bull. Math. Biology 38 (1976), no. 6, 643–658. MR 0481538
  • [2] Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133
  • [3] C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J. 33 (1984), no. 3, 319–343. MR 740953, 10.1512/iumj.1984.33.33018
  • [4] Albrecht Dold, Lectures on algebraic topology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 200, Springer-Verlag, Berlin-New York, 1980. MR 606196
  • [5] D. M. Dubois, A model of patchiness of prey-predator plankton populations, Ecol. Modelling 1 (1975), 67-80.
  • [6] Steven R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol. 17 (1983), no. 1, 11–32. MR 707221, 10.1007/BF00276112
  • [7] -, Travelling wave solutions of diffusive Volterra-Lotka interaction equations, Ph.D. Thesis, Univ of Minnesota, 1981.
  • [8] Richard J. Field and William C. Troy, The existence of solitary traveling wave solutions of a model of the Belousov-Zhabotinskiĭ reaction, SIAM J. Appl. Math. 37 (1979), no. 3, 561–587. MR 549140, 10.1137/0137042
  • [9] Paul C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin-New York, 1979. MR 527914
  • [10] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), 335-369.
  • [11] F. R. Gantmacher, The theory of matrices, Vol. 2, Chelsea, New York, 1964.
  • [12] Robert A. Gardner, Existence and stability of travelling wave solutions of competition models: a degree theoretic approach, J. Differential Equations 44 (1982), no. 3, 343–364. MR 661157, 10.1016/0022-0396(82)90001-8
  • [13] Robert A. Gardner, Existence of travelling wave solutions of predator-prey systems via the connection index, SIAM J. Appl. Math. 44 (1984), no. 1, 56–79. MR 730001, 10.1137/0144006
  • [14] Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
  • [15] S. P. Hastings, On the existence of homoclinic and periodic orbits for the Fitzhugh-Nagumo equations, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 123–134. MR 0393759
  • [16] Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Pure and Applied Mathematics, Vol. 60. MR 0486784
  • [17] A. Kolmogorov, I. Petrovsky and N. Piscounov, Étude de l'equation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Moscow Univ. Math. Bull. 1 (1937), 1-25.
  • [18] J. P. LaSalle, Stability theory for ordinary differential equations, J. Differential Equations 4 (1968), 57–65. MR 0222402
  • [19] J. B. McLeod and James Serrin, The existence of similiar solutions for some laminar boundary layer problems, Arch. Rational Mech. Anal. 31 (1968/1969), 288–303. MR 0235789
  • [20] Ross McMurtrie, Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments, Math. Biosci. 39 (1978), no. 1-2, 11–51. MR 0490056
  • [21] Akira Okubo, Diffusion and ecological problems: mathematical models, Biomathematics, vol. 10, Springer-Verlag, Berlin-New York, 1980. An extended version of the Japanese edition, Ecology and diffusion; Translated by G. N. Parker. MR 572962
  • [22] J. P. Pauwelussen, Heteroclinic waves of the FitzHugh-Nagumo equations, Math. Biosci. 58 (1982), no. 2, 217–242. MR 661209, 10.1016/0025-5564(82)90074-8
  • [23] William C. Troy, The existence of traveling wave front solutions of a model of the Belousov-Zhabotinskii chemical reaction, J. Differential Equations 36 (1980), no. 1, 89–98. MR 571130, 10.1016/0022-0396(80)90078-9
  • [24] T. Wyatt, The biology of Oikopleura dioica and frittilaria borealis in the southern Bight, Mar. Biol. 22 (1973), 137.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K57, 58F40, 92A15

Retrieve articles in all journals with MSC: 35K57, 58F40, 92A15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1984-0760975-3
Keywords: Traveling wave solution, diffusive Lotka-Volterra system, heteroclinic orbit, shooting argument
Article copyright: © Copyright 1984 American Mathematical Society