Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The radiance obstruction and parallel forms on affine manifolds

Authors: William Goldman and Morris W. Hirsch
Journal: Trans. Amer. Math. Soc. 286 (1984), 629-649
MSC: Primary 57R99; Secondary 53C20, 55R25
MathSciNet review: 760977
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A manifold $ M$ is affine if it is endowed with a distinguished atlas whose coordinate changes are locally affine. When they are locally linear $ M$ is called radiant. The obstruction to radiance is a one-dimensional class $ {c_M}$ with coefficients in the flat tangent bundle of $ M$. Exterior powers of $ {c_M}$ give information on the existence of parallel forms on $ M$, especially parallel volume forms. As applications, various kinds of restrictions are found on the holonomy and topology of compact affine manifolds.

References [Enhancements On Off] (What's this?)

  • [AM] L. Auslander and L. Markus, Holonomy of flat affinely connected manifolds, Ann. of Math. (2) 62 (1955), 139-159. MR 0072518 (17:298b)
  • [Br] G. Bredon, Sheaf theory, McGraw-Hill, New York, 1967. MR 0221500 (36:4552)
  • [Dw] W. G. Dwyer, Vanishing cohomology over nilpotent groups, Proc. Amer. Math. Soc. 49 (1975), 8-12. MR 0374242 (51:10442)
  • [FG1] D. Fried and W. Goldman, Three-dimensional affine crystallographic groups, Adv. in Math. 47 (1983), 1-49. MR 689763 (84d:20047)
  • [FG2] -, (in preparation).
  • [FGH1] D. Fried, W. Goldman and M. Hirsch, Affine manifolds and solvable groups. Bull. Amer. Math. Soc. 3 (1980), 1045-1047. MR 585187 (81i:57018)
  • [FGH2] -, Affine manifolds with nilpotent holonomy, Comment. Math. Helv. 56 (1981), 487-523. MR 656210 (83h:53062)
  • [G] W. Goldman, Discontinuous groups and the Euler class, Doctoral Dissertation, Univ. of California, Berkeley, Calif., 1980.
  • [GH1] W. Goldman and M. Hirsch, A generalization of Bieberbach's theorem, Invent. Math. 65 (1981), 1-11. MR 636876 (83f:53029)
  • [GH2] -, Polynomial forms on affine manifolds, Pacific J. Math. 101 (1982), 115-121. MR 671843 (84f:53026)
  • [GH3] -, Affine structures and actions of Lie groups (in preparation).
  • [GHL] W. Goldman, M. Hirsch and G. Levitt, Invariant measures for affine foliations, Proc. Amer. Math. Soc. 86 (1982), 511-518. MR 671227 (84a:57026)
  • [H] M. W. Hirsch, Flat manifolds and the cohomology of groups, Algebra and Geometric Topology, Lecture Notes in Math., vol. 664, Springer-Verlag, Berlin and New York, 1977. MR 518410 (80g:57057)
  • [HT] M. W. Hirsch and W. Thurston, Foliated bundles, flat manifolds and invariant measures, Ann. of Math. (2) 101 (1975), 369-390. MR 0370615 (51:6842)
  • [KN] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. I, Interscience, New York, 1963. MR 0152974 (27:2945)
  • [Mg] G. A. Margulis, Discrete groups of motions of spaces of nonpositive curvature, Trans. Amer. Math. Soc. 109 (1977), 33-45.
  • [Mi] J. W. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. in Math. 25 (1977), 178-187. MR 0454886 (56:13130)
  • [Mt] Y. Matsushima, Affine structures on complex manifolds, Osaka J. Math. 5 (1968), 215-222. MR 0240741 (39:2086)
  • [Mk] L. Markus, Cosmological models in differential geometry, Mimeographed Notes, Univ. of Minnesota, 1962, p. 58.
  • [Se] J. P. Serre, Cohomologie des groupes discrets, Prospects in Mathematics, Ann. of Math. Studies, no. 70, Princeton Univ. Press, Princeton, N. J., 1971, pp. 77-169. MR 0385006 (52:5876)
  • [Sm1] J. Smillie, Affinely flat manifolds, Doctoral Dissertation, Univ. of Chicago, 1977.
  • [Sm2] -, An obstruction to the existence of affinely flat manifolds, Invent. Math. 64 (1981), 411-415. MR 632981 (83a:53069)
  • [Z] R. J. Zimmer, Ergodic theory, group representations, and rigidity, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 383-416. MR 648527 (83k:22033)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R99, 53C20, 55R25

Retrieve articles in all journals with MSC: 57R99, 53C20, 55R25

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society