Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Radial functions and invariant convolution operators


Author: Christopher Meaney
Journal: Trans. Amer. Math. Soc. 286 (1984), 665-674
MSC: Primary 43A22; Secondary 42B15
DOI: https://doi.org/10.1090/S0002-9947-1984-0760979-0
MathSciNet review: 760979
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For $ 1 < p < 2$ and $ n > 1$, let $ {A_p}({{\mathbf{R}}^n})$ denote the Figà-Talamanca-Herz algebra, consisting of functions of the form $ ( \ast)$

$\displaystyle \sum\limits_{k = 0}^\infty {{f_k} \ast {g_k}} $

with $ \sum\nolimits_k {\vert\vert{f_k}\vert{\vert _p}\cdot\vert\vert{g_k}\vert{\vert _{p\prime}} < \infty } $. We show that if $ 2n/(n + 1) < p < 2$, then the subalgebra of radial functions in $ {A_p}({{\mathbf{R}}^n})$ is strictly larger than the subspace of functions with expansions $ ( \ast )$ subject to the additional condition that $ {f_k}$ and $ {g_k}$ are radial for all $ k$. This is a partial answer to a question of Eymard and is a consequence of results of Herz and Fefferman. We arrive at the statement above after examining a more abstract situation. Namely, we fix $ G \in [FIA]_{B}^{ - }$ and consider $ ^B{A_p}(G)$ the subalgebra of $ B$-invariant elements of $ {A_p}(G)$. In particular, we show that the dual of $ ^B{A_p}(G)$ is equal to the space of bounded, right-translation invariant operators on $ {L^{p}}(G)$ which commute with the action of $ B$.

References [Enhancements On Off] (What's this?)

  • [Br] Jean Braconnier, Sur les groupes topologiques localement compacts, J. Math. Pures Appl. 27 (1948), 1-85. MR 0025473 (10:11c)
  • [Cw] Michael Cowling, Some applications of Grothendieck's theory of topological tensor products in harmonic analysis, Math. Ann. 232 (1978), 273-285. MR 0493165 (58:12196)
  • [Ey] Pierre Eymard, Algèbres $ {A_p}$ et convoluteurs de $ {L^{p}}$, Sèm. Bourbaki 367, Nov. 1969.
  • [Ff] Charles Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336. MR 0296602 (45:5661)
  • [FT] Alessandro Figà-Talamanca, Translation invariant operators in $ {L^{p}}$, Duke Math. J. 32 (1965), 495-502. MR 0181869 (31:6095)
  • [GT] George Gasper and Walter Trebels, Multiplier criteria of Hörmander type for Fourier series and applications to Jacobi series and Hankel transforms, Math. Ann. 242 (1979), 225-240. MR 545216 (81j:42046)
  • [Go] Roger Godement, Introduction aux travaux de A. Selherg, Sém. Bourbaki 144, 1957.
  • [Ha] Klaus Hartmann, $ [FIA]_{B}^{ - }$ Gruppen und Hypergruppen, Monatsh. Math. 89 (1980), 9-17. MR 566291 (81e:43002)
  • [HHL] Klaus Hartmann, Rolf Wim Henrichs and Rupert Lasser, Duals of orbit spaces in groups with relatively compact inner automorphism groups are hypergroups, Monatsh. Math. 88 (1979), 229-238. MR 553732 (81b:43006)
  • [Hz 1] Carl S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996-999. MR 0063477 (16:127b)
  • [Hz 2] -, The theory of $ p$-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82. MR 0272952 (42:7833)
  • [Hz 3] -, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), 91-123. MR 0355482 (50:7956)
  • [Hz 4] -, On the asymmetry of norms of convolution operators. I, J. Funct. Anal. 23 (1976), 11-22. MR 0420138 (54:8153)
  • [Hz 5] -, Asymmetry of norms of convolution operators. II: Nilpotent Lie groups, Symposia Math. 22 (1977), 223-230. MR 0487284 (58:6932)
  • [HwRs] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. I and II, Springer-Verlag, Berlin, Heidelberg and New York, 1963 and 1970.
  • [Ig] Satoru Igari, On the multipliers of Hankel transform, Tôhoku Math. J. 24 (1972), 201-206. MR 0324332 (48:2684)
  • [KS] Eberhard Kaniuth and Detlef Steiner, On complete regularity of group algebras, Math. Ann. 204 (1973), 305-329. MR 0470613 (57:10361)
  • [LM] J. Liukkonen and R. Mosak, Harmonic analysis and centers of group algebras, Trans. Amer. Math. Soc. 195 (1974), 147-163. MR 0350322 (50:2815)
  • [Lh] Noël Lohoué, Estimations $ {L^p}$ des coefficients de représentation et opérateurs de convolution, Adv. in Math. 38 (1980), 178-221. MR 597197 (82m:43004)
  • [Mz] Michel Mizony, Contribution a l'analyse harmonique sphérique, Publ. Dép. Math. (Lyon) 12-1 (1975), 61-108. MR 0383011 (52:3893)
  • [Msk] Richard D. Mosak, The $ {L^1}$ and $ {C^\ast}$ -algebras of $ [FIA]_{B}^{ - }$ groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277-310. MR 0293016 (45:2096)
  • [Ob] Daniel M. Oberlin, $ {M_p}(G) \ne {M_q}(G)\;({p^{ - 1}} + {q^{ - 1}} = 1)$, Israel J. Math. 22 (1975), 175-179. MR 0387956 (52:8794)
  • [Pa] T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), 683-741. MR 513952 (81j:22003)
  • [Pt] Justin Peters, Representing positive definite $ B$-invariant functions on $ [FC]_{B}$ groups, Monatsh. Math. 80 (1975), 319-324. MR 0420151 (54:8166)
  • [PtSu] Justin Peters and Terje Sund, Automorphisms of locally compact groups, Pacific J. Math. 76 (1978), 143-156. MR 0578732 (58:28263)
  • [Rb] Stephen G. Roberts, $ {A_p}$ spaces and asymmetry of $ {L_p}$-operator norms for convolution operators, M.Sc. Thesis, Flinders University of South Australia, 1982.
  • [SnTo] Robert J. Stanton and Peter A. Tomas, Polyhedral summability of Fourier series on compact Lie groups, Amer. J. Math. 100 (1978), 477-493. MR 0622197 (58:29855)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A22, 42B15

Retrieve articles in all journals with MSC: 43A22, 42B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0760979-0
Keywords: Radial function, Figà-Talamanca-Herz algebra, $ [FIA]_{B}^{ - }$, $ B$-characters, convolution operator, compact semisimple Lie group, central function, multiplier, Fourier transform
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society