Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Galois theory for cylindric algebras and its applications


Author: Stephen D. Comer
Journal: Trans. Amer. Math. Soc. 286 (1984), 771-785
MSC: Primary 03G15; Secondary 06A15, 08B25, 20B35
DOI: https://doi.org/10.1090/S0002-9947-1984-0760986-8
MathSciNet review: 760986
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Galois correspondence between cylindric set algebras and permutation groups is presented in this paper. Moreover, the Galois connection is used to help establish two important algebraic properties for certain classes of finite-dimensional cylindric algebras, namely the amalgamation property and the property that epimorphisms are surjective.


References [Enhancements On Off] (What's this?)

  • [1] R. Balbes, Projective and injective distributive lattices, Notices Amer. Math. Soc. 13 (1966), 740. MR 0211927 (35:2802)
  • [2] S. Comer, Some representation theorems and the amalgamation property in algebraic logic, Ph.D. Thesis, Univ. of Colorado, 1967.
  • [3] -, Galois theory and the amalgamation property in finite dimensional cylindric algebras, Notices Amer. Math. Soc. 15 (1968), 103.
  • [4] -, A sheaf-theoretic duality theory for cylindric algebras, Trans. Amer. Math. Soc. 169 (1972), 75-87. MR 0307908 (46:7023)
  • [5] P. R. Halmos, Injective and projective Boolean algebras, Lattice Theory, Proc. Sympos. Pure Math., vol. 2, Amer. Math. Soc., Providence, R. I., 1961, pp. 114-120. MR 0137671 (25:1121)
  • [6] -, Boolean algebras, Van Nostrand, 1963; reprinted, Springer-Verlag, 1974.
  • [7] L. Henkin, J. D. Monk and A. Tarski, Cylindric algebras. Part I, North-Holland, 1971. MR 781929 (86m:03095a)
  • [8] L. Henkin et al, Cylindric set algebras, Lecture Notes in Math., vol. 883, Springer-Verlag, 1981 MR 639151 (84a:03078)
  • [9] B. Jonsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110-121. MR 0237402 (38:5689)
  • [10] M. Krasner, Une generalisation de la notion de corps, J. Math. Pures Appl. 17 (1938), 367-385.
  • [11] -, Generalisation abstract de la theorie de Galois, Colloq. Internat. CNRS, No. 24, 1950, pp. 163-168.
  • [12] -, Les algèbres cylindriques, Bull Soc. Math. France 86 (1959), 315-319.
  • [13] J. D. Monk, Model-theoretic methods and results in the theory of cylindric algebras, The Theory of Models (J. W. Addison et al., eds), North-Holland, 1965, pp. 235-250. MR 0200159 (34:58)
  • [14] I. Németi, Surjectiveness of epis is equivalent to Beth definability in algebraic logic, Budapest, 1982. (preprint)
  • [15] R. S. Pierce, Modules over commutative regular rings, Mem. Amer. Math. Soc. No. 70 (1967). MR 0217056 (36:151)
  • [16] D. Pigozzi, Amalgamation, congruence-extension, and interpolation properties in algebras, Algebra Universalis 1 (1972), 269-349. MR 0300897 (46:57)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03G15, 06A15, 08B25, 20B35

Retrieve articles in all journals with MSC: 03G15, 06A15, 08B25, 20B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0760986-8
Keywords: Cylindric algebras, Galois correspondence, amalgamation property, epimorphisms, injectives
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society