Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Behaviour of the velocity of one-dimensional flows in porous media


Author: Juan Luis Vázquez
Journal: Trans. Amer. Math. Soc. 286 (1984), 787-802
MSC: Primary 35B40; Secondary 35K55, 35L65, 76S05
DOI: https://doi.org/10.1090/S0002-9947-1984-0760987-X
MathSciNet review: 760987
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The one-dimensional flow of gas of density $ u$ through a porous medium obeys the equation $ {u_t} = {({u^m})_{xx}}$, where $ m > 1,x \in {\mathbf{R}}$ and $ t > 0$. We prove that the local velocity of the gas, given by $ \upsilon = - m{u^{m - 2}}{u_x}$, not only is bounded for $ t \geqslant \tau > 0$ but approaches an $ N$-wave profile as $ t \to \infty $. $ N$-waves are the typical asymptotic profiles for some first-order conservation laws, a class of nonlinear hyperbolic equations. The case $ m \leqslant 1$ is also studied: there are solutions with unbounded velocity while others have bounded velocity.


References [Enhancements On Off] (What's this?)

  • [1] D. C. Aronson. Regularity properties of flows through porous media, SIAM J. Appl. Math. 17 (1969), 461-467. MR 0247303 (40:571)
  • [2] D. C. Aronson and P. Bénilan, Régularité des solutions de l'équation des milieux poreux dans $ {{\mathbf{R}}^n}$, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), 103-105. MR 524760 (82i:35090)
  • [3] G. I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium, Prikl. Mat. Mekh. 16 (1952), 67-78. (Russian) MR 0046217 (13:700a)
  • [4] P. Bénilan and M. G. Crandall, The continuous dependence on $ \phi $ of the solutions of $ {u_t} - \Delta \phi (u) = 0$, Indiana Univ. Math. J. 30 (1981), 161-177. MR 604277 (83d:35071)
  • [5] P. Bénilan, M. G. Crandall and M. Pierre, Solutions of the porous media equation in $ {{\mathbf{R}}^n}$ under optimal conditions on initial values, Indiana Univ. Math. J. 33 (1984), 51-87. MR 726106 (86b:35084)
  • [6] J. G. Berryman and C. J. Holland, Stability of the separable solution for fast diffusion, Arch. Rational Mech. Anal. 74 (1980), 379-388. MR 588035 (81m:35065)
  • [7] H. Brezis and M. G. Crandall, Uniqueness of solutions of the initial-value problem for $ {u_t} - \Delta \varphi (u) = 0$, J. Math. Pures Appl. 58 (1981), 162-177.
  • [8] E. D. Conway and E. Hopf, Hamilton's theory and generalized solutions of the Hamilton-Jacobi equation, J. Math. Mech. 13 (1964), 939-986. MR 0182761 (32:243)
  • [9] C. M. Dafermos, Asymptotic behaviour of solutions of hyperbolic balance laws, Bifurcation Phenomena in Mathematical Physics and Related Topics. Proceedings NATO Adv. Study Inst., Cargèse, Corsica, 1979, pp. 521-533. MR 580309 (81g:35073)
  • [10] R. T. Di Perna, Decay and asymptotic behaviour of solutions to nonlinear hyperbolic systems of conservation laws, Indiana Univ. Math. J. 24 (1975), 1047-1071. MR 0410110 (53:13860)
  • [11] A. Friedman and S. Kamin, The asymptotic behaviour of a gas in an $ n$-dimensional porous medium, Trans. Amer. Math. Soc. 262 (1980), 551-563. MR 586735 (81j:35054)
  • [12] A. S. Kalashnikov, On the differential properties of generalized solutions of equations of the nonsteady-state filtration type, Vestnik Moskov Univ. Ser. I Mat. Mekh. 29 (1974), 62-68 (translation 48-53). MR 0342834 (49:7578)
  • [13] S. Kamin, The asymptotic behaviour of the solution of the filtration equation, Israel J. Math. 14 (1973), 76-78. MR 0315292 (47:3841)
  • [14] P. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537-566. MR 0093653 (20:176)
  • [15] T.-P. Liu, Decay to $ N$-waves of solutions of general systems of nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math. 30 (1977), 585-610. MR 0450802 (56:9095)
  • [16] T.-P. Liu and M. Pierre, Source-solutions and asymptotic behavior in conservation laws, MRC Technical Summary Report #2318, 1982; J. Differential Equations 51 (1984), 419-441. MR 735207 (85i:35094)
  • [17] O. A. Oleinik, A. S. Kalashnikov and C. Yui-Lin, The Cauchy problem and boundary problems for equations of the type of nonstationary filtration, Izv. Akad. Nauk Armyan SSR Ser. Mat. 22 (1958), 667-704. (Russian) MR 0099834 (20:6271)
  • [18] L. A. Peletier, The porous media equation, Applications of Nonlinear Analysis in the Physical Sciences (H. Amann et al., eds), Pitman, London, 1981, pp. 229-241. MR 659697 (83k:76076)
  • [19] J. L. Vazquez, Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983), 507-527. MR 694373 (84h:35014)
  • [20] -, Symétrisation pour $ {u_t} = \Delta \varphi (u)$ et applications, C. R. Acad. Sci. Paris Sér. I 295 (1982), 71-74.
  • [21] -, The interfaces of one-dimensional flows in porous media, Trans. Amer. Math. Soc. (to appear). MR 752500 (85h:35229)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35B40, 35K55, 35L65, 76S05

Retrieve articles in all journals with MSC: 35B40, 35K55, 35L65, 76S05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0760987-X
Keywords: Velocity of propagation, $ N$-waves, flows in porous media, asymptotic behaviour, locally bounded variation
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society