Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On a.e. convergence of solutions of hyperbolic equations to $ L\sp p$-initial data


Author: Alberto Ruiz
Journal: Trans. Amer. Math. Soc. 287 (1985), 167-188
MSC: Primary 35L15
DOI: https://doi.org/10.1090/S0002-9947-1985-0766212-9
MathSciNet review: 766212
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the Cauchy data problem $ u(x,0) = 0$, $ \partial u(x,0)/\partial t = f(x)$, for a strongly hyperbolic second order equation in $ n$th spatial dimension, $ n \geq 3$, with $ {C^\infty }$ coefficients. Almost everywhere convergence of the solution of this problem to initial data, in the appropriate sense is proved for $ f$ in $ {L^p}$, $ 2n/(n + 1) < p < 2(n - 2)/(n - 3)$. The basic techniques are $ {L^p}$-estimates for some maximal operators associated to the problem (see [4]), and the asymptotic expansion of the Riemann function given by D. Ludwig (see [9]).


References [Enhancements On Off] (What's this?)

  • [1] A. Cordoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), 979-1005. MR 507783 (80a:35117)
  • [2] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. II, Interscience, New York, 1962. MR 0065391 (16:426a)
  • [3] I. M. Gelfand and G. E. Shilov, Generalized functions, Vol. I, Academic Press, New York, 1964. MR 0166596 (29:3869)
  • [4] A. Greenleaf, Principal curvature and harmonic analysis, Indiana Univ. Math. J. 30 (1981). MR 620265 (84i:42030)
  • [5] J. Hadamard, Lectures on Cauchy's problem, New Haven, 1923.
  • [6] P. D. Lax, Lectures on hyperbolic P.D.E, Stanford Univ., 1963.
  • [7] J. Leray, Lecture notes in hyperbolic equations, Princeton Univ., 1952.
  • [8] D. Ludwig, Exact and asymptotic solutions of the Cauchy problem, Comm. Pure Appl. Math. 23 (1960), 473-508. MR 0115010 (22:5816)
  • [9] -, The singularities of the Riemann function, AEC Comput. Appl. Math. Center, Inst. Math. Sci., New York University, 1961.
  • [10] M. Riesz, L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81 (1949), 1-223. MR 0030102 (10:713c)
  • [11] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295. MR 508453 (80k:42023)
  • [12] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971. MR 0304972 (46:4102)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35L15

Retrieve articles in all journals with MSC: 35L15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0766212-9
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society