The algebra of the finite Fourier transform and coding theory

Author:
R. Tolimieri

Journal:
Trans. Amer. Math. Soc. **287** (1985), 253-273

MSC:
Primary 94B05; Secondary 22E25, 42A38

MathSciNet review:
766218

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The role of the finite Fourier transform in the theory of error correcting codes has been explored in a recent text by Richard Blahut. In this work we study how the finite Fourier transform relates to certain polynomial identities involving weight enumerator polynomials of linear codes. These include the generalized MacWilliams identities and theorems originally due to . Gleason concerning polynomial algebras containing weight enumerator polynomials. The Heisenberg group model of the finite Fourier transform provides certain algebras of classical theta functions which will be applied to reprove Gleason's results.

**[1]**L. Auslander and R. Tolimieri,*Algebraic structures for ⨁∑_{𝑛≥1}𝐿²(𝑍/𝑛) compatible with the finite Fourier transform*, Trans. Amer. Math. Soc.**244**(1978), 263–272. MR**506619**, 10.1090/S0002-9947-1978-0506619-4**[2]**L. Auslander and R. Tolimieri,*Is computing with the finite Fourier transform pure or applied mathematics?*, Bull. Amer. Math. Soc. (N.S.)**1**(1979), no. 6, 847–897. MR**546312**, 10.1090/S0273-0979-1979-14686-X**[3]**Andrew M. Gleason,*Weight polynomials of self-dual codes and the MacWilliams identities*, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 211–215. MR**0424391****[4]**Jessie MacWilliams,*A theorem on the distribution of weights in a systematic code*, Bell System Tech. J.**42**(1963), 79–94. MR**0149978****[5]**F. Jessie MacWilliams, Colin L. Mallows, and Neil J. A. Sloane,*Generalizations of Gleason’s theorem on weight enumerators of self-dual codes*, IEEE Trans. Information Theory**IT-18**(1972), 794–805. MR**0398664****[6]**F. MacWilliams and N. Sloane,*The theory of error correcting codes*, North-Holland, Amsterdam, 1978.**[7]**J.-P. Serre,*A course in arithmetic*, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French; Graduate Texts in Mathematics, No. 7. MR**0344216****[8]**N. J. Sloane,*Weight enumerators of codes*, Combinatorics (M. Hall, Jr. and J. H. van Lont, eds.), Reidel, Dordrecht, 1975, pp. 115-142.**[9]**N. J. A. Sloane,*Error-correcting codes and invariant theory: new applications of a nineteenth-century technique*, Amer. Math. Monthly**84**(1977), no. 2, 82–107. MR**0424398****[10]**Richard E. Blahut,*Theory and practice of error control codes*, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. MR**698946**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
94B05,
22E25,
42A38

Retrieve articles in all journals with MSC: 94B05, 22E25, 42A38

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1985-0766218-X

Article copyright:
© Copyright 1985
American Mathematical Society