Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the model equations which describe nonlinear wave motions in a rotating fluid


Author: Jong Uhn Kim
Journal: Trans. Amer. Math. Soc. 287 (1985), 403-417
MSC: Primary 35Q20; Secondary 76U05
DOI: https://doi.org/10.1090/S0002-9947-1985-0766227-0
MathSciNet review: 766227
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns mathematical aspects of the two model equations describing nonlinear wave motions in a rotating fluid. We establish local existence of solutions and show that singularities occur in a finite time under certain hypotheses. We also show that these equations admit nonconstant travelling wave solutions.


References [Enhancements On Off] (What's this?)

  • [1] T. B. Benjamin, Lectures on nonlinear wave motion, Lectures in Appl. Math., Vol. 15 (A. Newell, ed.), Amer. Math. Soc., Providence, R. I., 1974, pp. 3-47. MR 0359517 (50:11970)
  • [2] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A 272 (1972), 47-78. MR 0427868 (55:898)
  • [3] J. L. Bona, On solitary waves and their role in the evolution of long waves, Applications of Nonlinear Analysis in the Physical Sciences (H. Amann, N. Bazley and K. Kirchgässner, ed.), Pitman, London, 1981, pp. 183-205.
  • [4] M. Crandall and P. Rabinowitz, Bifurcation from single eigenvalues, J. Funct. Anal. 8 (1971), 321-340. MR 0288640 (44:5836)
  • [5] J. Hale, Ordinary differential equations, Wiley, New York, 1969. MR 0419901 (54:7918)
  • [6] T. Kato, Quasi-linear equations of evolution with application in partial differential equations, Lecture Notes in Math., vol. 448, Springer-Verlag, Berlin, 1975, pp. 25-70. MR 0407477 (53:11252)
  • [7] -, On the Korteweg-de Vries equations, Manuscripta Math. 28 (1979), 89-99.
  • [8] J. Kim, Solutions to the equations of one-dimensional viscoelasticity in $ BV$, SIAM J. Math. Anal. 14 (1983), 684-695. MR 704484 (85c:73030)
  • [9] S. Leibovich, Weakly nonlinear waves in rotating fluids, J. Fluid Mech. 42 (1970), 802-822. MR 0273890 (42:8766)
  • [10] R. L. Seliger, A note on the breaking waves, Proc. Roy. Soc. London Ser. A 303 (1968), 493-496.
  • [11] D. Westreich, Bifurcation at eigenvalues of odd multiplicity, Proc. Amer. Math. Soc. 41 (1973), 609-614. MR 0328707 (48:7049)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35Q20, 76U05

Retrieve articles in all journals with MSC: 35Q20, 76U05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0766227-0
Keywords: Nonlinear wave motion, rotating fluid, local existence of solution, formation of singularities, periodic travelling wave solution
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society