INEQUALITIES FOR SOME MAXIMAL FUNCTIONS. I

BY

MICHAEL COWLING AND GIANCARLO MAUCERI

Abstract. This paper presents a new approach to maximal functions on \(\mathbb{R}^n \). Our method is based on Fourier analysis, but is slightly sharper than the techniques based on square functions. In this paper, we reprove a theorem of E. M. Stein [16] on spherical maximal functions and improve marginally work of N. E. Aguilera [1] on the spherical maximal function in \(L^2(\mathbb{R}^2) \). We prove results on the maximal function relative to rectangles of arbitrary direction and fixed eccentricity; as far as we know, these have not appeared in print for the case where \(n \geq 3 \), though they were certainly known to the experts. Finally, we obtain a best possible theorem on the pointwise convergence of singular integrals, answering a question of A. P. Calderón and A. Zygmund [3, 4] to which N. E. Aguilera and E. O. Harboure [2] had provided a partial response.

We prove, in a unified manner, the boundedness of various maximal functions. The basis of our approach is the use of the Mellin transformation, and development in spherical harmonics, to reduce “difficult” maximal functions to “easy” maximal functions and expressions involving singular integrals. We are able to treat various maximal functions which arise in differentiation theory and in the study of singular integrals; unfortunately maximal functions based on oscillatory integrals (such as those involved in the pointwise convergence of Fourier series) require more sophisticated ideas.

Our fundamental inequality is the following. If

\[
 k(x, y) = \int_{\mathbb{R}} du \sum_{m \in \mathbb{N}} \sum_{j \in D_m} a_{j,m,u}(x) k_{j,m,u}(y)
\]

(\(a_{j,m,u} \) and \(k_{j,m,u} \) are described below), then

\[
 \left| \int_{\mathbb{R}^n} dy k(x, y)f(x - y) \right| \leq \int_{\mathbb{R}} du \sum_{m \in \mathbb{N}} \sum_{j \in D_m} \left| a_{j,m,u}(x) k_{j,m,u} \ast f(x) \right|.
\]

In some cases, it is easy to verify that, for all \(x \) in \(\mathbb{R}^n \),

\[
 \left[\sum_{j \in D_m} \left| a_{j,m,u}(x) \right|^2 \right]^{1/2} \leq b_m(u), \quad m \in \mathbb{N}, \quad u \in \mathbb{R},
\]
and consequently
\[\left| \int_{\mathbb{R}^n} dy \, k(x, y) f(x - y) \right| \leq \int_{\mathbb{R}} du \sum_{m \in \mathbb{N}} b_m(u) \left[\sum_{j \in D_m} |k_{j, m, u} * f(x)|^2 \right]^{1/2}, \]
and so we obtain a bound, which is pointwise, in terms of convolutions. If \(k_\alpha \) are different kernels such that the corresponding \(d_m \)-vectors \(a_{m, u} \) are dominated by the same \(b_m(u) \), we obtain the maximal function estimate
\[\sup_{\alpha} \left| \int_{\mathbb{R}^n} dy \, k_\alpha(x, y) f(x - y) \right| \leq \int_{\mathbb{R}} du \sum_{m \in \mathbb{N}} b_m(u) |k_{m, u} * f(u)|, \]
and hence
\[\left[\int_{\mathbb{R}^n} dx \sup_{\alpha} \left| \int_{\mathbb{R}^n} dy \, k_\alpha(x, y) f(x - y) \right|^p \right]^{1/p} \]
\[\leq \int_{\mathbb{R}} du \sum_{m \in \mathbb{N}} b_m(u) \left[\int_{\mathbb{R}^n} dx |k_{m, u} * f(x)|^p \right]^{1/p} \]
\[\leq \left(\int_{\mathbb{R}} du \sum_{m \in \mathbb{N}} b_m(u) \|k_{m, u} * f\|_p \right) \|f\|_p, \]
where \(\|g * \|_p \) denotes the operator norm on \(L^p(\mathbb{R}^n) \) of convolution by \(g \). These and similar inequalities are the backbone of our work.

The kernels \(k_{j, m, u} \) are homogeneous functions, smooth on \(\mathbb{R}^n \setminus \{0\} \). Precisely, if \(Y_{1, m}, Y_{2, m}, \ldots, Y_{d_m, m} \) is an orthonormal basis for the space \(\mathcal{H}_m^0 \) of spherical harmonics of degree \(m \) on the unit sphere \(S^{n-1} \) in \(\mathbb{R}^n \) (often written just \(S \)), equipped with normalised Lebesgue measure (written \(\omega_n^{-1} \omega \), or \(\omega^{-1} dy \)), then
\[k_{j, m, u}(y) = Y_{j, m}(y') |y'|^{-i u - n}, \quad y \in \mathbb{R}^n \setminus \{0\}, \]
where \(y = y' |y'| \). The functions \(a_{j, m, u}(x) \) are defined by the rules
\[a_{j, m, u}(x) = \omega^{-1} \int_S dy' \, k_u(x, y') Y_{j, m}(y'), \]
\[k_u(x, y') = (2\pi)^{-1} \int_{\mathbb{R}^n} dt \, k(t, ty') t^{n-1+i u}. \]
It is clear that, at least formally, if \(D_m = \{1, 2, \ldots, d_m\} \), then
\[\int_{\mathbb{R}} du \sum_{m \in \mathbb{N}} \sum_{j \in D_m} a_{j, m, u}(x) k_{j, m, u}(y) \]
\[= \int_{\mathbb{R}} du \, k_u(x, y') |y'|^{-i u - n} = k(x, y), \]
by the properties of spherical harmonics and the Mellin transform. We also observe that
\[a_{j, m, u}(x) = (2\pi)^{-1} \int_{\mathbb{R}^n} dy \, k(x, y) \overline{Y}_{j, m}(y') |y'|^{i u}. \]
It will sometimes save effort to write $a_{m,u}(x)$ for the d_m-vector and $|a_{m,u}(x)|$ for its norm.

The first part of this paper will be devoted to a few preliminary results. We derive the mapping properties of convolution with the vector-valued kernel $k_{m,u}$ from $L^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n; C^{d_m})$, and recall the definition and elementary properties of the Handy-Littlewood maximal function. This latter is used to control

$$\int_J du a_{0,u}(x) k_{0,u} * f(x),$$

where J is the interval $[-1,1]$, when $a_{0,u}(x)$, considered as a function of u, is the restriction to J of a Fourier-Stieltjes transform.

The second part of the paper treats some radial maximal functions. We give two general results, and derive from these easy proofs and generalizations of some results of E. M. Stein [16] and N. E. Aguilera [1]. These results are used in §4.

In §3, certain maximal functions arising in differentiation theory are studied. Again, we prove a few general results and use these to reprove results of A. Córdoba [6] and J.-O. Strömberg [19], and to sharpen up some results of N. E. Aguilera and E. O. Harboure [2].

In §4, we apply our method to the theory of singular integrals. We improve results of N. E. Aguilera and E. O. Harboure [2] on a question raised by A. P. Calderón and A. Zygmund [3, 4].

In this paper we systematically denote by C a constant which may depend on any or all of the parameters in play, and which may vary from line to line, while by $C_{p,q}$ we mean a constant which depends only on the parameters p, q, and possibly n, the dimension of the space. We ignore the dependence of constants on n. By J we denote the interval $[-1,1]$; J_m means J_m if $m = 0$ and \emptyset (the empty set) if $m \in \mathbb{N}^*$ (the nonzero natural numbers).

We recall that d_m, the dimension of H_m, is given by the formula (see E. M. Stein and G. Weiss [18, p. 147]).

$$d_m = \frac{(n + 2m - 2)\Gamma(n + m - 2)}{\Gamma(m + 1)\Gamma(n + 1)};$$

we shall use the notation

$$\gamma_{m,iu} = i^{m n/2 + i u} \frac{\Gamma(m/2 - i u/2)}{\Gamma(n/2 + m/2 - i u/2)}.$$

The Fourier transformation is defined as follows:

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} dx f(x) e^{-2\pi i \xi \cdot x}$$

for nice f, and then extended.

These results were announced in [7]; related work appears in [8]. A sequel to this paper is in preparation. We are grateful to G. Weiss for his encouragement during the researching and writing of this paper.
I. Some preliminaries. In this section, we obtain estimates for the operator from $L^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n; C^d_u)$ of convolution with $k_{m,u}$, for p between 1 and 2. These are proved by establishing $L^2 - L^2$ and $H^1 - L^1$ estimates, and then interpolating. Later, we recall the definition of the Hardy-Littlewood maximal function, and use this to control

$$\int_J du \, a_{0,u}(x) k_{0,u} \ast f(x)$$

for nice $a_{0,u}$.

Lemma 1.1. With the notation established in the introduction,

$$\|k_{m,u} \ast f\|_2 \leq |\gamma_{m-1,u}| d_m^{1/2} \|f\|_2.$$

Proof. We denote by \mathcal{F} the Fourier transformation. Clearly

$$\|k_{m,u} \ast f\|_2 = \|\mathcal{F}(k_{m,u} \ast f)\|_2 = \|\mathcal{F} k_{m,u} \mathcal{F} f\|_2 \leq \|\mathcal{F} k_{m,u}\|_\infty \|\mathcal{F} f\|_2 = \|\mathcal{F} k_{m,u}\|_\infty \|f\|_2,$$

so it suffices to show that

$$|\mathcal{F} k_{m,u}(\xi)| = |\gamma_{m-1,u}| d_m^{1/2}, \quad \xi \in \mathbb{R}^n \setminus \{0\}.$$

This is straightforward. The Fourier transform of $k_{j,m,u}$ is $\gamma_{m-1,u}$ times the function $Y_{j,m}(\xi')|\xi'|^{j-1}$ (see, e.g., p. 78 of Stein [15]), and

$$\left[\sum_{j \in D_m} |Y_{j,m}(\xi')|^2 \right]^{1/2} = C, \quad \xi' \in S^{n-1};$$

clearly

$$C^2 = \omega^{-1} \int_S d\xi' \sum_{j \in D_m} |Y_{j,m}(\xi')|^2 = d_m. \quad \square$$

We note explicitly that $|\gamma_{m-1,u}|$ explodes when $m = 0$ and u is small. This is why we have to treat this case separately.

Lemma 1.2. With the notation established in the introduction,

$$\|k_{m,u} \ast f\|_1 \leq C_{m,u} \|f\|_{H^1},$$

where

$$C_{m,u} \leq C d_m \log(2 + m + |u|), \quad m \in \mathbb{N}, u \in \mathbb{R} \setminus J_m,$$

and

$$C_{m,u} \leq C |u|^{-1}, \quad m = 0, u \in J.$$

Proof. We refer the reader to R. R. Coifman and G. Weiss [5] for an excellent discussion of $H^1(\mathbb{R}^n)$. From their work and Lemma 1.1, it is clearly enough to estimate I, where

$$I = \int_{|x| > 2|\xi|} dx |k_{m,u}(x - y) - k_{m,u}(x)|.$$
This we do by considering separately first I_1, where

$$I_1 = \int_{|x| > (2 + m + |u|)|y|} dx |k_{m,n}(x - y) - k_{m,u}(x)|$$

$$\leq 2 \int_{|x| > (3 + m + |u|)|y|} dx |k_{m,u}(x)|$$

$$= 2 \log(3 + m + |u|) \left(\int_S dx' |k_{m,u}(x')| \right)^{1/2}$$

$$\leq 2 \log(3 + m + |u|) \omega^{1/2} \left(\int_S dx' |k_{m,u}(x')|^2 \right)^{1/2}$$

$$= 2 \log(3 + m + |u|) \omega d_{m}^{1/2}$$

and then I_2, where

$$I_2 = \int_{|x| > (2 + m + |u|)|y|} dx |k_{m,u}(x - y) - k_{m,u}(x)|$$

$$= \int_{|x| > (2 + m + |u|)|y|} dx \left| \int_0^1 ds d/s k_{m,u}(x - sy) \right|$$

$$\leq \int_{|x| > (1 + m + |u|)|y|} dx |\nabla k_{m,u}(x)| |y|$$

$$\leq \int_{|x| > (1 + m + |u|)|y|} dx \left(|iu + n| |k_{m,u}(x')| |x|^{-n-1} + |\nabla, k_{m,u}(x)| \right) |y|,$n

where ∇, t is the tangential component of the gradient. Continuing by applying Hölder’s inequality and integrating by parts, we obtain

$$I_2 \leq (1 + m + |u|)^{-1} |iu + n| \omega^{1/2} \left[\int_S dx' |k_{m,u}(x')|^2 \right]^{1/2}$$

$$+ (1 + m + |u|)^{-1} \omega^{1/2} \left[-\int_S dx' \Delta k_{m,u}(x') \cdot k_{m,u}(x') \right]^{1/2}$$

$$= (1 + m + |u|)^{-1} \omega d_{m}^{1/2} \left[|iu + n| + [m(m + n - 2)]^{1/2} \right].$$

Combining the estimates for I_1 and for I_2, we conclude that

$$I \leq Cd_{m}^{1/2} \log(2 + m + |u|).$$

From this estimate and Lemma 1.1 we obtain the desired result. □

PROPOSITION 1.3. Suppose that $1 < p \leq 2$. Then the following estimates hold:

$$\|k_{m,u} \ast f\|_p \leq C_p \left(m + 1 \right)^{n/2-1} \left(m + |u| \right)^{-n/p} \left[\log(2 + m + |u|) \right]^{2/p-1} \|f\|_p,$n

$$m \in \mathbb{N}, u \in \mathbb{R} \setminus J_m,$n

$$\leq C_p |u|^{-1} \|f\|_p, \quad m = 0, u \in J.$$

PROOF. This is a corollary of Lemmata 1.1 and 1.2 and the interpolation theorem of C. Fefferman and E. M. Stein [10]. We also use easy estimates for Γ-functions. □
Since the operator norm of convolution with $k_{0,u}$ blows up as u tends to 0, we need to exercise particular care in dealing with expressions of the form
\[\int_J du \, a_{0,u}(x) k_{0,u} * f(x). \]

The Hardy-Littlewood maximal function Mf of a locally integrable function f is a valuable tool in our investigations.

The Hardy-Littlewood maximal function Mf is defined as follows:
\[Mf(x) = \sup_{r \in \mathbb{R}^+} \frac{1}{|B(x, r)|} \int_{B(x, r)} dy |f(y)|, \]
where $B(x, r)$ is the ball centred at x of radius r, and $|B(x, r)|$ is its measure. The essential facts about Mf may be found on p. 5 of Stein [15]. We recall only that, if $1 < p \leq \infty$, there is a constant A_p such that
\[\|Mf\|_p \leq A_p \|f\|_p, \quad f \in L^p(\mathbb{R}^n). \]

Lemma 1.4. Suppose that $F: \mathbb{R}^+ \to \mathbb{R}^+$ is decreasing, and that
\[\int_{\mathbb{R}^+} dy F(|y|) < \infty. \]
Then for any λ in \mathbb{R}^+ and f in $L^p(\mathbb{R}^n)$,
\[\int_{\mathbb{R}^n} dy \lambda^n F(\lambda |y|) |f(x - y)| \leq \left[\int_{\mathbb{R}^n} dy F(|y|) \right] Mf(x). \]

Proof. The function $y \to \lambda^n F(\lambda |y|)$ satisfies the same hypotheses as $y \to F(|y|)$, so without loss of generality we may take λ to be 1. Since
\[F(|y|) = -\int_{|y|}^{\infty} dF(t) = -\int_{\mathbb{R}^+} dF(t) \chi_{B(0, t)}(y) \]
(where B is the closed ball),
\[\int_{\mathbb{R}^n} dy F(|y|) |f(x - y)| = -\int_{\mathbb{R}^+} dF(t) \int_{\mathbb{R}^n} dy \chi_{B(0, t)}(y) |f(x - y)| \]
\[\leq -\int_{\mathbb{R}^+} dF(t) |B(0, t)| Mf(x) \]
\[= -\int_{\mathbb{R}^+} dF(t) \int_{\mathbb{R}^n} dy \chi_{B(0, t)}(y) Mf(x) \]
\[= \int_{\mathbb{R}^n} dy F(|y|) Mf(x). \]

Proposition 1.5. Suppose that for some measure μ on \mathbb{R} of bounded variation,
\[a_{0,u}(x) = \int_{\mathbb{R}} d\mu_x(v) e^{-2\pi i u v}, \quad u \in J, \]
where $\int_{\mathbb{R}} |d\mu_x(v)| \leq A$. Then
\[\left| \int_J du a_{0,u}(x) k_{0,u} * f(x) \right| \leq 4\pi \omega A Mf(x) + A \int_{J} |u| |k_{0,u} * f(x)|. \]
Proof. We observe first that
\[\left| \int f a_{0,u}(x) k_{0,u} \ast f(x) \right| \leq \int |f| |a_{0,u}(x)| |k_{0,u} \ast f(x)| \]
\[+ \left| \int (1 - |u|) \int d\mu_x(v) e^{-2\pi i u v} k_{0,u} \ast f(x) \right| \]
\[\leq A \int |f| |k_{0,u} \ast f(x)| + \int |d\mu_x(v)| \left| \int (1 - |u|) e^{-2\pi i u v} k_{0,u} \ast f(x) \right|. \]

Next, let \(H: \mathbb{R} \to \mathbb{R} \) be the function \(H(w) = \sin^2(w/2)(w/2)^2 \), and let \(G: \mathbb{R} \to \mathbb{R} \) be the majorant \(G(w) = 8/4 + w^2 \). Then
\[\int (1 - |u|) e^{-2\pi i u |y|} = \int (1 - |u|) \exp(-i u \log(2\pi v + \log|y|)) |y|^{-n} \]
\[= H(\log(e^{2\pi v}|y|)) |y|^{-n}, \]
and so, by Lemma 1.4,
\[\int |d\mu_x(v)| \left| \int (1 - |u|) e^{-2\pi i u v} k_{0,u} \ast f(x) \right| \]
\[= \int |d\mu_x(v)| \left| \int dy H(\log(e^{2\pi v}|y|)) |y|^{-n} f(x - y) \right| \]
\[\leq \int |d\mu_x(v)| \left| \int dy G(\log(|y|)) |y|^{-n} Mf(x) \right| \]
\[\leq A \int dy' \int dt t^{-1} G(\log(t)) Mf(x) \]
\[= 4\pi \omega A Mf(x). \]

We remark that if \(a_{0,u}(x) \) is Hölder continuous with exponent more than 1/2, as a function of \(u \), then it is certainly equal to a Fourier-Stieltjes transform in \(J \). More to the point of what follows, if
\[a_{0,u}(x) = \int d\mu_x(v) e^{-2\pi i u v}, \quad u \in J, \]
then, for any \(s \) in \(\mathbb{R}^+ \),
\[s^{i u} a_{0,u}(x) = \int d\mu_x(v + \log(s)/2\pi) e^{-2\pi i u v}, \quad u \in J, \]
and of course
\[\int |d\mu_x(v + \log(s)/2\pi)| = \int |d\mu_x(v)|. \]

We also point out that the above proof goes through verbatim for vector-valued functions \(f \), provided that convolution be appropriately defined. See the discussion of the point at the end of the proof of Theorem 2.1.
2. Radial maximal functions. In this section we prove two general theorems, and show that these contain the results of Stein [16] and Aguilera [1] as particular cases. We shall treat a vector-valued version of one of these results, since it will be useful later in this form. Naturally the other theorem also could be given a vectorial formulation.

Theorem 2.1. Suppose that \(p \in (1,2] \), that \(A \in \mathbb{R}^+ \), and that \(b: \mathbb{R} \to \mathbb{R}^+ \) be such that

\[
B = \int_{\mathbb{R}\setminus J} du \, b(u) |u|^{-n/p'} \log(2 + |u|)^{2/p-1} < \infty.
\]

Let \(\Phi \) be the set of all radial distributions \(\phi \) on \(\mathbb{R}^n \), integrable near 0 and at \(\infty \), for which the function \(a \), given by the formula

\[
a_{0,u} = (2\pi)^{-1} \int_{\mathbb{R}^n} d\phi(y) |y|^i u, \quad u \in \mathbb{R},
\]

is such that

\[
a_{0,u} = \int_{\mathbb{R}} d\mu(v) e^{-2\pi i u v}, \quad u \in J,
\]

with \(\int_{\mathbb{R}} |d\mu(v)| \leq A \), and \(|a_{0,u}| \leq b(u), u \in \mathbb{R} \setminus J \).

Then for any \(d \in \mathbb{N}^* \), and for all \(f \in L^p(\mathbb{R}^n; \mathbb{C}^d) \),

\[
M_{\phi} f = \sup \{ \| \phi \ast f \| : \phi \in \Phi \}
\]

exists in \(L^p(\mathbb{R}^n) \); more precisely,

\[
M_{\phi} f \leq 4\pi \omega A M|f| + A \int_{\mathbb{R}} du |u| |k_{0,u} \ast f| + \int_{\mathbb{R}\setminus J} du \, b(u) |k_{0,u} \ast f|,
\]

and so

\[
\| M_{\phi} f \|_p \leq C_p (A + B) \| f \|_p.
\]

Proof. Since \(\phi \) is radial, we obtain, by inverting the Mellin transformation, that, distributionally

\[
\phi = \int_{\mathbb{R}} du \, a_{0,u} k_{0,u}.
\]

(Integrability of \(\phi \) near 0 avoids the difficulties one encounters trying to synthesize the Laplace operator in 0 in this manner; integrability at \(\infty \) appears in the hypothesis of the theorem purely to assure an easy definition of \(a_{0,u} \), and may be relaxed.) Thus

\[
\phi \ast f = \int_{\mathbb{R}} du \, a_{0,u} k_{0,u} \ast f
\]

\[
= \int_{J} du \, a_{0,u} k_{0,u} \ast f + \int_{\mathbb{R}\setminus J} du \, a_{0,u} k_{0,u} \ast f.
\]
By Proposition 1.5 and the hypotheses,
\[
|\phi \ast f| \leq \left| \int_J du \, a_{0, u} k_{0, u} \ast f \right| + \int_{\mathbb{R}^+} du |a_{0, u}| |k_{0, u} \ast f|
\]
\[
\leq 4\pi \omega AM|f| + A \int_J du |u| |k_{0, u} \ast f|
\]
\[
+ \int_{\mathbb{R}^+} du b(u) |k_{0, u} \ast f|.
\]

The right-hand side is independent of \(\phi \) in \(\Phi \), and so
\[
M_{\Phi} f \leq 4\pi \omega AM|f| + A \int_J du |u| |k_{0, u} \ast f| + \int_{\mathbb{R}^+} du b(u) |k_{0, u} \ast f|.
\]

(The "supremum" is defined in the separable Banach lattice \(L^p(\mathbb{R}^n) \); this avoids measurability questions. See N. Dunford and J. T. Schwartz [9, Chapter 3] for the general theory necessary). We conclude by noting that, from Proposition 1.3 and the properties of \(M_\Phi f \),
\[
\|M_{\Phi} f\|_p \leq 4\pi \omega A \|M|f|\|_p + A \int_J du |u| \| |k_{0, u} \ast f| \|_p + \int_{\mathbb{R}^+} du b(u) \| |k_{0, u} \ast f| \|_p.
\]

For vector-valued \(f \), we have been guilty of omitting the definition of \(k_{0, u} \ast f \); we mean, of course, the operator, perhaps more correctly written \(k_{0, u} \otimes I \ast f \) (but is pedantry correct?) which acts in each component of the vector by convolution with \(k_{0, u} \). It is a well-known result of J. Marcinkiewicz and A. Zygmund [13] that the norm of this operator on \(L^p(\mathbb{R}^n; \mathbb{C}^d) \) is that of convolution by \(k_{0, u} \) on \(L^p(\mathbb{R}^n) \).

Consequently, \(\|M_{\Phi} f\|_p \leq C_p(A + B)\|f\|_p \). \(\square \)

The next result is a variant on the same theme.

Theorem 2.2. Suppose that \(p \in (1, 2] \), that \(r \in [1, p] \), that \(\alpha \in (-\infty, n/p' - 1/r) \), and that \(A, B \in \mathbb{R}^+ \). Let \(\Phi \) be the set of all radial distributions \(\phi \) on \(\mathbb{R}^+ \), integrable near 0 and at \(\infty \), for which the function \(a \), given by the formula
\[
a_{0, u} = (2\pi \omega)^{-1} \int_{\mathbb{R}^n} d\phi(y) |y|^\alpha u, \quad u \in \mathbb{R},
\]
is such that,
\[
a_{0, u} = \int_\mathbb{R} d\mu(v) e^{-2\pi i uv}, \quad u \in J,
\]
with \(\int_\mathbb{R} |d\mu(v)| \leq A \), and also such that
\[
\left[\int_{\mathbb{R}^+} du \left[|a_{0, u}| |u|^{\alpha} \right]^{r'/r} \right]^{1/r'} \leq B
\]
(with the obvious modification if \(r' = \infty \)). Then for all \(f \) in \(L^p(\mathbb{R}^n) \),
\[
M_{\Phi} f = \sup \{|\phi \ast f| : \phi \in \Phi\}
\]
exists in \(L^p(\mathbb{R}^n) \). More precisely
\[
M_{\Phi} f \leq 4\pi \omega AM|f| + A \int_J du |u| |k_{0, u} \ast f| + B \left(\int_{\mathbb{R}^+} du |u|^{\alpha'} |k_{0, u} \ast f|^{r'} \right)^{1/r'},
\]
whence \(\|M_{\Phi} f\|_p \leq C_{p, r, \alpha}(A + B)\|f\|_p \).
Proof. As in the proof of Theorem 2.1, we have that
\[|\phi \ast f| \leq \int_J du a_{0,u} k_{0,u} \ast f + \int_{R^J} du |a_{0,u}| k_{0,u} \ast f|. \]
By Proposition 1.5, Hölder’s inequality, and the hypothesis,
\[|\phi \ast f| \leq 4\pi\omega A M f + A \int_J du |u| k_{0,u} \ast f \]
\[+ \left(\int_{R^J} du |a_{0,u}|^{-\sigma} \right)^{1/r} \left(\int_{R^J} du |u|^\sigma k_{0,u} \ast f \right)^{1/r} \]
\[\leq 4\pi\omega A M f + A \int_J du |u| k_{0,u} \ast f | + B \left(\int_{R^J} du |u|^{-\sigma} k_{0,u} \ast f \right)^{1/r}. \]
As before, it follows that the right-hand side of this inequality dominates \(M\Phi f \). We conclude by observing that Minkowski’s inequality finishes off the proof:
\[\left\| \left(\int_{R^J} du |u|^{-\sigma} k_{0,u} \ast f \right)^{1/r} \right\|_p \leq \left(\int_{R^J} du |u|^{-\sigma} \| k_{0,u} \ast f \|_p \right)^{1/r} \]
\[\leq \left(\int_{R^J} du |u|^{-\sigma} C_p |u|^{-n/p} \log(2 + |u|)^{2/p-1} \| f \|_{\dot{R}^p} \right)^{1/r} \]
\[= C_{p,r,a} \| f \|_{\dot{R}^p}, \]
from Proposition 1.3 and the initial restrictions on \(p \) and \(r \). \(\square \)

Before we pass to a few applications of these results, we remark that by duality, the estimates for \(\| k_{0,u} \ast 1 \| \) are valid for \(\| k_{0,u} \ast 1 \| \), and so Theorems 2.1 and 2.2 have easy extensions to \(L^p(R^n) \) with \(p \) in \((2, \infty)\). However, for those \(p \), a better strategy for treating maximal functions seems to be interpolation between \(L^2 \)-results (of the type just proved) and \(L^\infty \)-results (obtained trivially if \(\Phi \) contains only measures of uniformly bounded variation). So we omit these extensions.

Some applications of Theorems 2.1 and 2.2 will now be given. First, we discuss the results of Stein [16].

Put \(m^\sharp(x) = b^\sharp((1 - |x|^2)^{1/2}) \), \(x \in R^n \), where
\[b^\sharp = \left[\int_{R^n} dx \left((1 - |x|^2)^{1/2} + 1 \right)^{z-1} \right]^{-1} = \left[(\omega/2) B(n/2, z) \right]^{-1}. \]
Then \(m^\sharp \), defined initially for \(\text{Re}(z) > 0 \) as an integrable function, extends meromorphically to \(z \) in \(C \) as a distribution with singular support \(S^\sharp \). Further, \(m^\sharp = \int_{R^n} du a^\sharp u k_{0,u} \) where
\[a^\sharp = (2\pi)^{-1} \int_{R^n} dy m^\sharp(y)|y|^{iu} \]
\[= (2\pi)^{-1} b^\sharp \int_{R^n} dt (1 - t^2)^{-1/2} t^{iu+n-1} \]
\[= (2\pi)^{-1} B(n/2, z)^{-1} B((m + iu)/2, z), \]
\[= (2\pi)^{-1} \frac{\Gamma((n + iu)/2)}{\Gamma(n/2)} \frac{\Gamma(n/2 + z)}{\Gamma((n + iu)/2 + z)}. \]
This is analytic in $\text{Re}(z) > -n/2$. As a function of u it is clearly real-analytic, and so certainly admits an expansion as a Fourier-Stieltjes transform in J.

From the well-known asymptotic formulae for the Γ-function, it is clear that, if $1 \geq \text{Re}(z) > -n/2$, then

$$|a_u^z| \leq C \|u\|^{-\text{Re}(z)}, \quad u \in \mathbb{R} \setminus J.$$

We therefore obtain the following corollary of Theorem 2.1.

Corollary 2.3 (Stein [16]). If $1 < p < 2$, and $\text{Re}(z) > 1 - n/p'$, then $\|M_z f\|_p \leq C \|f\|_p$ for all f in $L^p(\mathbb{R}^n)$, where

$$M_z f = \sup \left\{ \left| \int_{\mathbb{R}^n} dt t^{-n} m^z(y/t) f(x - y) \right| : t \in \mathbb{R}^+ \right\}.$$

Proof. We take some representation of a_u^z as a Fourier-Stieltjes transform in J,

$$a_u^z = \int_{\mathbb{R}} d\mu(v) e^{-2\pi iuv}, \quad u \in J,$$

and let $b : \mathbb{R} \to \mathbb{R}^+$ be the function given by the rule

$$b(u) = (2\pi \omega)^{-1} \left| B(n/2, z)^{-1} B((n + iu)/2, z) \right|, \quad u \in \mathbb{R}.$$

Since $m^z(y) = \int_{\mathbb{R}} du a_u^z k_{0,u}(y)$ then

$$t^{-n} m^z(y/t) = \int_{\mathbb{R}} du a_u^z t^{-n} k_{0,u}(y/t) = \int_{\mathbb{R}} du t^{iu} a_u^z k_{0,u}(y).$$

Alternatively

$$(2\pi \omega)^{-1} \int_{\mathbb{R}} dy t^{-n} m^z(y/t) |y|^{iu} = t^{iu}(2\pi \omega)^{-1} \int_{\mathbb{R}} dy m^z(y) |y|^{iu} = t^{iu} a_u^z.$$

Now as remarked at the end of §1,

$$t^{iu} a_u^z = \int_{\mathbb{R}} d\mu(v + \log(t)/2\pi) e^{-2\pi iuv}, \quad u \in J,$$

and

$$\int_{\mathbb{R}} |d\mu(v) + \log(t)(2\pi)| = \int_{\mathbb{R}} |d\mu(v)| = A,$$

say. Further,

$$|t^{iu} a_u^z| = b(u), \quad u \in \mathbb{R}.$$

So with Φ as in the enunciation of Theorem 2.1, $M_z f \leq M_{\Phi f}$, and the estimate for $M_z f$ follows from that for $M_{\Phi f}$.

Now we consider some work of N. Aguilera [1]. If $\phi \in L^1(\mathbb{R}^n)$, and ϕ is radial (let us write $\phi(x) = F(|x|)$), then

$$a_{0,u} = (2\pi \omega)^{-1} \int_{\mathbb{R}^n} dx \phi(x) |x|^{iu}$$

$$= (2\pi)^{-1} \int_{\mathbb{R}^n} dt F(t) t^{n-1+iu}$$

$$= (2\pi)^{-1} \int_\mathbb{R} dv G(v) e^{iu v},$$
where $G(v) = e^{-v} F(e^v)$. Since $\phi \in L^1(\mathbb{R}^n)$,

$$\int_{\mathbb{R}} dv |G(v)| = \int_{\mathbb{R}^n} dx |\phi(x)| < \infty,$$

and so $a_{0,u}$ is automatically a Fourier-Stieltjes transform.

By using Theorem 2.2, we recover Aguilera’s results.

Corollary 2.4. If $n = 2$, $1 < q < 2$, and Φ is the set of all ϕ in $L^1(\mathbb{R}^n)$ such that $\|\phi\|_1 \leq A$ and

$$\left(\int_{\mathbb{R}^n} dx |x|^{2q-2} |\phi(x)|^q \right)^{1/q} \leq B,$$

then $M_\phi f(\sup_{\phi \in \Phi} |\phi * f|)$ exists in $L^2(\mathbb{R}^2)$, and

$$\|M_\phi f\|_2 \leq C_q (A + B) \|f\|_2, \quad f \in L^2(\mathbb{R}^2).$$

Proof. We apply Theorem 2.2 with r equal to 2, and $\alpha = 1/2q$. For ϕ in Φ, $a_{0,u}$ is equal to a Fourier-Stieltjes transform, as remarked above (after formula (1)). Let $G(v) = e^{-v} F(e^v)$, as before. Then $a_{0,u} = (2\pi)^{-1} \hat{\phi}(-2\pi)^{-1} u$.

It is sufficient to show that, if $\phi \in \Phi$, then

$$\left[\int_{\mathbb{R}^n} du \left[|a_{0,u}| |u|^{-1/2q} \right]^2 \right]^{1/2} \leq B',$$

where B' may depend on B, A, q, etc. but not on ϕ. We estimate this integral as follows:

$$\left[\int_{\mathbb{R}^n} du \left[|a_{0,u}| |u|^{-1/2q} \right]^2 \right]^{1/2} \leq \left[\int_{\mathbb{R}^n} du |a_{0,u}|^q \right]^{1/q} \left[\int_{\mathbb{R}^n} du |u|^{-q'/q(q'-2)} \right]^{(q'-2)/2q'}$$

$$= \left[\int_{\mathbb{R}^n} du \left(2\pi \right)^{-1} \hat{\phi}(2\pi)^{-1} u \right]^q \left[2(q' - 2) \right]^{(q'-2)/2q'}$$

$$\leq (2\pi)^{-1/q} \left[\int_{\mathbb{R}} dv |G(v)|^q \right]^{1/q} \left[2(q' - 2) \right]^{(q'-2)/2q'}$$

$$= C_q \left[\int_{\mathbb{R}^n} \left| 2\pi \right| t^{-1/2q} |F(t)|^q \right]^{1/q}$$

$$= C_q \left[\int_{\mathbb{R}^2} dx x^{2q-2} |\phi(x)|^q \right]^{1/q}$$

$$\leq C_q B,$$

as required, by Hölder’s inequality and the Hausdorff-Young theorem.

On the other hand, by applying Theorem 2.1, we may obtain a slightly sharper theorem for a different class Φ. Let $b: \mathbb{R} \to \mathbb{R}^+$ be such that

$$B = \int_{\mathbb{R}_+} du b(u) |u|^{-1} < \infty.$$
In particular, if we take \(\phi: \mathbb{R}^2 \to \mathbb{C} \) such that \(G \), defined above (after formula (1)), is in \(h^1(\mathbb{R}) \), as defined by D. Goldberg [11], then we may set \(b(u) = |a_{0,u}| \).

Corollary 2.5. Suppose that \(A \in \mathbb{R}^+ \) and that \(b \) is as above, and let \(\Phi \) be the set of integrable functions \(\phi \) such that \(\|\phi\|_1 \leq A \) and \(|a_{0,u}| \leq b(u), \ u \in \mathbb{R} \setminus J \). Then \(M_\Phi f \) exists in \(L^1(\mathbb{R}^2) \) for any \(f \) in \(L^2(\mathbb{R}^2) \), and

\[
\|M_\Phi f\|_2 \leq C_{A,b}\|f\|_2, \quad f \in L^2(\mathbb{R}^2).
\]

Proof. Omitted, since it is essentially like those of Corollaries 2.3 and 2.4.

We note explicitly that this corollary contains the following result: if \(\phi \) is such that \(G \) is in \(h^1(\mathbb{R}) \), then, putting \(\phi,(x) = t^{-2}\phi(x/t), \)

\[
\left\| \sup_{t > 0} |\phi,(x) * f| \right\|_2 \leq C_\phi\|f\|_2, \quad f \in L^2(\mathbb{R}^2).
\]

We were unable to prove this using Aguilera’s technique.

3. **Nonradial maximal functions.** As in §2, we shall first prove some general results on maximal functions, and then apply them.

Theorem 3.1. Suppose that \(1 < p < 2 \), and that \(b: \mathbb{N} \times \mathbb{R} \to \mathbb{R}^+ \) is such that

\[
\sum_{m \in \mathbb{N}} \int_{\mathbb{R} \setminus J_m} du \ b(m,u)(1 + m)^{m/2 - 1}(m + |u|)^{-n/p'} \log(2 + m + |u|)^{2/p - 1}
\]

is finite. Suppose that \(A \in \mathbb{R}^+ \). Let \(\Phi \) be the set of all distributions \(\phi \) on \(\mathbb{R}^n \), integrable near 0 and at \(\infty \) such that, if

\[
a_{m,u} = \frac{(2\pi \omega)^{-1}}{\int_{\mathbb{R}^n} d\mu(y)} y^j u_j \overline{Y}_{j,m}(y'),
\]

then

\[
\left(\sum_{j \in D_m} |a_{j,m,u}|^2 \right)^{1/2} \leq b(m,u), \quad u \in \mathbb{R} \setminus J_m,
\]

and also

\[
a_{0,u} = \int_{\mathbb{R}} d\mu(v) e^{-2\pi i u v}, \quad u \in J,
\]

with \(\int_{\mathbb{R}} |d\mu(v)| \leq A \). Then for all \(f \) in \(L^p(\mathbb{R}^n) \),

\[
M_\Phi f = \sup \{ |\phi * f|: \phi \in \Phi \}
\]

exists in \(L^p(\mathbb{R}^n) \). More precisely,

\[
M_\Phi f \leq 4\pi \omega A M f + A \int f \ |k_{0,u} * f| + \sum_{m \in \mathbb{N}} \int_{\mathbb{R} \setminus J_m} du \ b(m,u)|k_{m,u} * f|,
\]

whence \(\|M_\Phi f\|_p \leq C_{p,A,b}\|f\|_p \).

Proof. This is just a routine generalization of the proof of Theorem 2.1, and we omit it.
Theorem 3.2. Suppose $p \in (1, 2]$, $r \in [1, p]$, $A, B \in \mathbb{R}^+$, $\alpha, \beta, \gamma \in \mathbb{R}$, and
(i) $\alpha + \gamma > 1/r - n/p'$;
(ii) $\alpha + \beta + \gamma > 2/r - n/p' + (n/2 - 1)$;
(iii) $\beta + \gamma > 1/r - n/p' + (n/2 - 1)$.
Let Φ be the set of all distributions ϕ on \mathbb{R}^n, integrable near 0 and at ∞, for which the function a, given by the formula
$$a_j, m, u = (2\pi)^{-1} \int_{\mathbb{R}^n} d\phi(y) |y|^{-m} \gamma_{j, m}(y')$$
is such that
$$a_{0, u} = \int_{\mathbb{R}} d\mu(v) e^{-2\pi i uv}, \quad u \in J,$$
with $\int_{\mathbb{R}} |d\mu(v)| \leq A$, and also such that
$$\left[\sum_{m \in \mathbb{N}} \int_{\mathbb{R}^n} du |a_{m, u}|^{r'} (1 + |u|)^{r'\gamma}(m + |u|)^{-r\gamma} \right]^{1/r'} \leq B$$
(with the obvious modifications if $r' = \infty$). Then for all f in $L^p(\mathbb{R}^n)$,
$$M_\phi f = \sup \{ |\phi * f| : \phi \in \Phi \}$$
exists in $L^p(\mathbb{R}^n)$. More precisely,
$$M_\phi f \leq 4\pi \omega A M f + A \int_j du |u| |k_{0, u} * f|$$
$$+ B \left[\sum_{m \in \mathbb{N}} \int_{\mathbb{R}^n} du (1 + |u|)^{-\alpha}(1 + m)^{-\beta}(m + |u|)^{-\gamma}|k_{m, u} * f| \right]^{1/r},$$
and so
$$\|M_\phi f\|_p \leq C_{p, r, \alpha, \beta, \gamma} (A + B) \|f\|_p.$$

Proof. As before, it is straightforward to see that
$$|\phi * f| \leq 4\pi \omega A M f + A \int_j du |u| |k_{0, u} * f|$$
$$+ \sum_{m \in \mathbb{N}} \int_{\mathbb{R}^n} du |a_{m, u}| |k_{m, u} * f|.$$
By hypothesis, the first term of this product is bounded by B, while, from Minkowski's inequality,
\[
\left\| \sum_{m \in \mathbb{N}} \int_{\mathbb{R} \setminus \mathbb{R}_m} du (1 + |u|)^{-\alpha} (1 + m)^{-\beta} (m + |u|)^{-\gamma} |k_{m,u} \ast f| \right\|_p^{1/r} \]
\[
\leq \sum_{m \in \mathbb{N}} \int_{\mathbb{R} \setminus \mathbb{R}_m} du (1 + |u|)^{-\alpha} (1 + m)^{-\beta} (m + |u|)^{-\gamma} \|k_{m,u} \ast f\|_p^{1/r} \]
\[
\leq C_p \left(\sum_{m \in \mathbb{N}} \int_{\mathbb{R} \setminus \mathbb{R}_m} du (1 + |u|)^{-\alpha} (1 + m)^{-\beta + \gamma n/2 - r} \cdot (m + |u|)^{-\gamma - \gamma n/p'} \log(2 + m + |u|)^{2r/p - r} \right)^{1/r} \|f\|_p.
\]

The last expression in square brackets may be estimated easily by considering separately $|u| \leq m + 1$ and $|u| \geq m + 1$, and using hypotheses (i), (ii) and (iii). We leave this to the reader. \(\square \)

Our applications regard functions (or distributions) on \mathbb{R}^n which may be readily expressed in polar coordinates. It will be useful to remind the reader of a few familiar results on spherical harmonic expansions, so that the angular part of the functions may be treated.

Lemma 3.3. Suppose that $q \in [1, 2]$, and that $\beta_0 = (2 - n)(1/q - 1/2)$. If $f \in L^q(S^{n-1})$, and
\[
|b_{j,m}| = \omega^{-1} \int_S dx' f(x') \overline{Y}_{j,m}(x'),
\]
then if $\beta = \beta_0$ and $r' \geq q'$, or if $\beta < \beta_0$ and $1/r' < 1/q' + \beta_0 - \beta$,
\[
\left(\sum_{m \in \mathbb{N}} (1 + m)^{r\beta} |b_{j,m}|^{-r'} \right)^{1/r'} \leq C_{q,r',\beta} \|f\|_q.
\]

Proof. If $f \in L^2(S^{n-1})$, we have the Plancherel formula
\[
\left(\sum_{m \in \mathbb{N}} |b_{j,m}|^2 \right)^{1/2} = \left(\omega^{-1} \int_S dx' |f(x')|^2 \right)^{1/2}.
\]

Next, by an obvious estimation,
\[
|b_{j,m}| \leq \omega^{-1} \int_S dx' |f(x')| \left(\sum_{j \in D_m} \left| Y_{j,m}(x') \right|^2 \right)^{1/2}
\]
\[
= \omega^{-1} \int_S dx' |f(x')| d_m^{1/2}.
\]

By interpolation we obtain the Hausdorff-Young inequality
\[
\left(\sum_{m \in \mathbb{N}} d_m (d_m^{1/2} |b_{j,m}|)^{q'} \right)^{1/q'} \leq \|f\|_q.
(where the norm is relative to normalised Lebesgue measure in \(S^{n-1}\)). Since \(d_m\) grows like \((1 + m)^{n-2}\), we obtain
\[
\left(\sum_{m \in \mathbb{N}} (1 + m)^{q' \beta_0 |b_m|^{q'}} \right)^{1/q'} \leq C_q \|f\|_{q'}.
\]
Evidently, if \(r' \geq q'\),
\[
\left(\sum_{m \in \mathbb{N}} (1 + m)^{r' \beta_0 |b_m|^{r'}} \right)^{1/r'} \leq C_q \|f\|_{q'},
\]
while if \(\beta < \beta_0\) and \(1/r' < 1/q' + \beta_0 - \beta\), then Hölder’s inequality, dextrously applied, proves the rest of the lemma. \(\square\)

Lemma 3.4. Suppose that \(f \in L^1(S^{n-1})\), and that
\[
b_{j,m} = \omega^{-1} \int_S dx' f(x') \overline{\nu}_{j,m}(x').
\]
If \(n = 2\) and \(f \in L \log^+ L\), then
\[
\sum_{m \in \mathbb{N}} (1 + m)^{-1}|b_m| \leq C \int_S dx' |f(x')| \left[\log^+ |f(x')| + 1 \right].
\]
If \(n \geq 3\), \(q = 2(1 - 1/n)\), and \(f \in L^{q,1}(S^{n-1})\) (the usual Lorentz space, as defined and studied in [18], e.g.) then
\[
\sum_{m \in \mathbb{N}} (1 + m)^{-1}|b_m| \leq C \|f\|_{q,1}.
\]
Proof. In the case where \(n = 2\), the result is well known. It follows readily from Hardy’s inequality and the fact that \(L \log^+ L(S^1) \subseteq H^1(S^1)\) (à propos, see E. M. Stein [14]).

To prove the second result, we use the Lorentz spaces \(L^{p,q}(\mathbb{N}; d)\) on \(\mathbb{N}\) relative to the weight \(d\). Let \(c_m\) be a \(d_m\)-vector such that \(|c_m| = (1 + m)^{-1}\), for \(m\) in \(\mathbb{N}\). Then the generalized Hausdorff-Young inequality implies that
\[
\sum_{m \in \mathbb{N}} (1 + m)^{-1}|b_m| \leq C \|f\|_{q,1}.
\]
whence \(\sum_{m \in \mathbb{N}} (1 + m)^{-1}|b_m| \leq C \|f\|_{q,1}\). \(\square\)

To state our applications, we need a little notation. If \(u \in C^\infty_c(\mathbb{R}^n)\), \(\sigma \in SO(n)\), and \(t \in \mathbb{R}^+\), we denote by \(u^{\sigma,t}\) the \(C^\infty_c(\mathbb{R}^n)\)-function defined thus
\[
u^{\sigma,t}(x) = u(\sigma t x), \quad x \in \mathbb{R}^n.
\]
For a distribution \(\phi\) on \(\mathbb{R}^n\), we denote by \(\phi_{\sigma,t}\) the distribution given by the rule
\[
\phi_{\sigma,t}(u) = \phi(u^{\sigma,t}), \quad u \in C^\infty_c(\mathbb{R}^n).
\]
For obvious reasons, we call \(\phi_{\sigma,t}\) a “normalised dilate and rotate of \(\phi\).”

Suppose that \(E\) be an open subset of \(\mathbb{R}^n\), of finite measure \(|E|\), starlike about \(0\). Then there exists a (measurable) function \(R: S^{n-1} \to \mathbb{R}^+\) such that
\[
E = \{ rx': x' \in S^{n-1}, r \in [0, R(x'))\}.
\]
Let ϕ be $|E|^{-1} 1_E$ (1_E is the characteristic function of E).

We shall be interested in the maximal functions $M_\phi f$:

$$M_\phi f = \sup \{ |\phi * f| : \phi \in \Phi \}$$

for various families of distributions Φ. See M. de Guzmán’s book [12] for the relevance of these maximal functions in differentiation theory.

Corollary 3.5. Suppose that $R^2 \in L \log^+ L(S^1)$ if $n = 2$, or that $R^n \in L^{q,1}(S^{n-1})$, where $q = 2 - 2/n$ if $n \geq 3$. Then if ϕ is as above, and Φ is the set of all normalized dilates and rotates of ϕ, we have the inequalities following:

$$\|M_\phi f\|_2 \leq C \|\nabla^2 R\|_L \log L + \|R_2\|_L \|R_2\|^{-1}\|f\|_2,$$

for $n = 2$ and all f in $L^2(R^2)$; if $n \geq 3$, then for all f in $L^2(R^n)$,

$$\|M_\phi f\|_2 \leq C \|R^n\|q,1 \|R^n\|^{-1}\|f\|_2.$$

Proof. Let ψ be the distribution associated to the function given by the formula

$$\psi(x) = |E|^{-1} \exp(-|x|/R(x^r)), \quad x \in \mathbb{R}^n \setminus \{0\},$$

and let Ψ be the family of all its mentioned dilates and rotates. Since

$$|\phi_{a,s} * f| \leq |f e_{\phi_{a,s}} * |f|,$$

it suffices to show that, for any f in $L^2(R^n)$,

$$\|M_\phi f\|_2 \leq C_E \|f\|_2.$$

Let $b: \mathbb{N} \times \mathbb{R} \to \mathbb{R}^+$ be defined by the rule

$$b(m, u) = (2\pi\omega)^{-1} \left(\sum_{j \in D_m} \left| \int_{\mathbb{R}^n} d\psi(y) |y|^{iu \frac{1}{2} Y_{j,m}(y')} \right|^2 \right)^{1/2}.$$

We observe that, for any σ and s in $SO(n)$ and \mathbb{R}^+,

$$(2\pi\omega)^{-1} \left(\sum_{j \in D_m} \left| \int_{\mathbb{R}^n} d\psi_{\sigma,s}(y) |y|^{iu \frac{1}{2} Y_{j,m}(y')} \right|^2 \right)^{1/2} = b(m, u).$$

Theorem 3.1 may be applied as long as the function

$$u \to (2\pi\omega)^{-1} \int_{\mathbb{R}^n} d\psi(y) |y|^{iu}$$

may be written as a Fourier-Stieltjes transform in J, and provided

$$\sum_{m \in \mathbb{N}} \int_{\mathbb{R}^n} du b(m, u)(1 + m)^{-1/2}(m + |u|)^{-n/2} < \infty.$$

Since

$$(2\pi\omega)^{-1} \int_{\mathbb{R}^n} d\psi(y) |y|^{iu} = (2\pi\omega |E|)^{-1} \int_S dx' \int_{\mathbb{R}^+} dt t^{-n-1} \exp(-t/R(x')) t^{iu}$$

$$= (2\pi\omega |E|)^{-1} \Gamma(n + iu) \int_S dx' R(x')^{n+iu},$$
which is differentiable qua function of u provided that

$$\int_S dx' \, R(x') \log(R(x')) < \infty$$

(true by hypothesis), while

$$\sum_{m \in \mathbb{N}} \int_{R \setminus J_m} du \, b(m, u)(1 + m)^{n/2 - 1}(m + |u|)^{-n/2}$$

$$\leq 2^{n/2} \sum_{m \in \mathbb{N}} \int_R du \, b(m, u)(1 + m)^{-1}$$

$$\leq C \left| E \right|^{-1} \sum_{m \in \mathbb{N}} \int_R du \log(|n + iu|) \left(\sum_{j \in D_k} \left| \int_S dy' \, R(y') \frac{n + iu}{j} \log\log + L \right| \right)^{1/2}$$

$$\leq C \| R \|_{L^2} \left[\| R \|_{L^2} \| L^2 \| \right] \quad \text{if } n = 2$$

$$\leq C \| R \|_{L^q} \| R \|_{q, 1} \quad \text{if } n \geq 3$$

by Lemma 3.4; the corollary is proved.

Corollary 3.6. Suppose that $2n/n + 1 < p \leq 2$, and that $p'(1 - 1/n) < q \leq 2$.

Let Φ be the set of all functions of the form $|E|^{-1}E$, where $E = \{ x \in \mathbb{R}^n : 0 \leq |x| < R(x') \}$ and $\| R^n \|_q \leq C \| R^n \|_1 < \infty$.

Then

$$\| M_{\Phi} f \|_p \leq C_{p, q} \| f \|_p, \quad f \in L^p(\mathbb{R}^n).$$

Proof. This result follows from Theorem 3.2 and Lemma 3.3 much as Corollary 3.5 followed from Theorem 3.1 and Lemma 3.4. We omit the details.

We obtain similar results when we consider distributions ϕ on \mathbb{R}^n of the form

$$\phi(f) = \int_0^1 dt \, t^{n-1} \int_S dx' \theta(x') f(tx'), \quad f \in C(\mathbb{R}^n),$$

where $\theta \in L^1(S^{n-1})$, and let Φ be the set of all normalized dilates and rotates of ϕ.

Corollary 3.7. With the notation just described, M_{Φ} is bounded on $L^2(\mathbb{R}^n)$ if $\theta \in H^1(S^1)$ (when $n = 2$), or if $\theta \in L^{q, 1}(S^{n-1})$, where $q = 2 - 2/n$ (when $n \geq 3$).

Corollary 3.8. If $2n/(n + 1) < p \leq 2$ and $(n - 1)p'/n < q \leq 2$, and if Φ is the set of all normalized dilates and rotates of distributions ϕ described above, where $\| \theta \|_q \leq 1$, then M_{Φ} is bounded on $L^p(\mathbb{R}^n)$.

Proofs. We omit these: Corollary 3.7 is like Corollary 3.5, and Corollary 3.8 is like Corollary 3.6.

By interpolation with easily proved results for $L^1(\mathbb{R}^n)$ and $L^\infty(\mathbb{R}^n)$, we may extend the above results. For instance, we have the following improvement of Corollary 3.8.

Corollary 3.9. If $1 < p \leq 2$ and $(n - 1)p'/n < q$, and if Φ is the set of all normalized dilates and rotates of distributions ϕ described above (2), where $\| \theta \|_q \leq 1$, then M_{Φ} is bounded on $L^p(\mathbb{R}^n)$.
Proof. If $p = \infty$, then M_ϕ is bounded when $q = 1$; if $p = 1$, then M_ϕ is of weak type $(1, 1)$ if $q = \infty$. Consequently, if $q = \infty$, M_ϕ is bounded on $L^{1+\varepsilon}(\mathbb{R}^n)$ for any ε in \mathbb{R}^+. Interpolating between this result and that of Corollary 3.8 for $p = 2$, we obtain the claim.

Of course, we could also obtain information for p in $(2, \infty)$ by interpolation (it would suffice to have $q' < p(n - 1)/(n - 2)$), but this is perhaps not best possible, at least if $n \geq 3$.

It may be of interest that the results of Corollary 3.8 are as sharp as those of Corollary 3.9, for those p for which Corollary 3.8 holds. It seems to be impossible to modify the argument leading to Corollary 3.8 to obtain the whole range $(1, 2]$ for p. The essential difficulty is that we cannot prove estimates for the decrease of the coefficients in the spherical harmonic expansion of f in $L^q(S^{n-1})$ for q greater than 2 which are better than those for $q = 2$.

The results of Corollaries 3.8 and 3.9 are essentially best possible if $1 < p \leq 2$ (see N. E. Aguilera and E. O. Harboure [2]). From Corollary 3.5, we may obtain estimates for maximal functions involving rectangles of fixed eccentricity and arbitrary directions, essentially equivalent to the results of A. Córdoba [6] and J.-O. Strömberg [19]. If we take E to be the rectangle $[-l, l] \times [-\frac{l}{\sqrt{2}}, \frac{l}{\sqrt{2}}]$ in \mathbb{R}^2 (with $l > 1$), then parametrising x' in S^1 by the argument θ, we obtain

$$R(\theta) = \min\left(|l\cos(\theta)|^{-1}, \frac{1}{l|l\sin(\theta)|}\right).$$

For norm calculations, we might as well use

$$R'(\theta) = \min\left(l^{-1}l^{-1}\left|\theta - \pi/2\right|^{-1}\right), \quad |\theta| \leq \pi/2,$$

$$= \min\left(l, l^{-1}\left|\theta - \pi/2\right|^{-1}\right), \quad |\theta - \pi| \leq \pi/2.$$

It follows that the norm of the maximal operator on $L^2(\mathbb{R}^l)$ is of the order of $\log(l)$.

If we take E to be the rectangle $[-l^{n-1}, l^{n-1}] \times [-l, l]^{n-1}$ in \mathbb{R}^n ($n \geq 3$), then similar calculations lead to the estimate that the norm of the maximal operator on $L^2(\mathbb{R}^n)$ is of the order of $l^{n(n-2)/2}$. This is essentially best possible. However, as E. M. Stein [17] points out, the interesting case is when $p > 2$, and we have no significant contribution to the case $p = n$.

4. Convergence of singular integrals. In this section, we apply our techniques to the pointwise convergence of singular integrals. Our results complement work of A. P. Calderón and A. Zygmund [3, 4] and of N. E. Aguilera and E. O. Harboure [2].

A singular integral kernel is a measurable function $k: \mathbb{R}^n \times \mathbb{R}^n \setminus \{0\} \to \mathbb{C}$ such that

$$k(x, \lambda y) = \lambda^{-n}k(x, y), \quad \lambda \in \mathbb{R}, x \in \mathbb{R}^n, y \in \mathbb{R}^n \setminus \{0\},$$

and

$$\int_S k(x, y') dy' = 0, \quad x \in \mathbb{R}^n.$$
Given a singular integral kernel, we attempt to associate to it an operator K, by the following procedure. First we form, for ε in \mathbb{R}^+, $K_\varepsilon f$:

$$K_\varepsilon f(x) = \int_{\mathbb{R}^n \setminus B_\varepsilon} k(x, y) f(x - y) \, dy$$

where B_ε is the ball of radius ε. Then we try to let ε tend to 0. There are two natural questions: when does $K_\varepsilon f$ converge in norm and when does it converge pointwise, as ε tends to 0? The pointwise convergence will, of course, be controlled by the maximal operator $K^* f = \sup_{\varepsilon \in \mathbb{R}^+} |K_\varepsilon f|.$

Theorem 4.1. Suppose that k is a singular integral kernel, and that for some q greater than $2(n - 1)/n$,

$$\left(\int_S |k(x, y')|^q \right)^{1/q} \leq B, \quad x \in \mathbb{R}^n.$$

Then $\|K^* f\|_2 \leq C_q \|f\|_2 f \in L^2(\mathbb{R}^n)$, and $K_\varepsilon f$ converges pointwise and in $L^2(\mathbb{R}^n)$ to an $L^2(\mathbb{R}^n)$-function denoted Kf.

Proof. The arguments presented by Aguilera and Harboure (op. cit., pp. 567 and 570) show that it suffices to prove a priori estimates for $K^* f$. We may also suppose that $q < 2$.

By using spherical harmonics, we may write

$$k(x, y) = \sum_{m \in \mathbb{N}^*} \sum_{j \in D_m} b_{j,m}(x) k_{j,m}(y)$$

where

$$b_{j,m}(x) = \omega^{-1} \int_S k(x, y') \overline{Y}_{j,m}(y') \, dy'$$

and

$$k_{j,m}(y) = |y|^{-n} Y_{j,m}(y').$$

Since $q > 2(n - 1)/n$, we may choose β in \mathbb{R} such that

$$-1/2 < \beta < (1/q - 1/2)(1 - n).$$

From Lemma 3.3, with $r = 2$, and the hypothesis,

$$\left[\sum_{m \in \mathbb{N}^*} \sum_{j \in D_m} m^{2\beta} |b_{j,m}(x)|^2 \right]^{1/2} \leq C_{q,\beta} B.$$
Now
\[|K_\varepsilon f(x)| = \sum_{m \in \mathbb{N}^*} \sum_{j \in D_m} b_{j,m}(x) \int_{\mathbb{R}^n \setminus B_\varepsilon} dy k_{j,m}(y) f(x - y)\]
\[\leq \left[\sum_{m \in \mathbb{N}^*} m^{2\beta} \sum_{j \in D_m} |b_{j,m}(x)|^2 \right]^{1/2}\]
\[\cdot \left[\sum_{m \in \mathbb{N}^*} \sup_{\varepsilon \in \mathbb{R}^+} \sum_{j \in D_m} \int_{\mathbb{R}^n \setminus B_\varepsilon} dy k_{j,m}(y) f(x - y)\right]^{1/2}\]
\[\leq C_{q,\beta} B \left[\sum_{m \in \mathbb{N}^*} m^{-2\beta} \sup_{\varepsilon \in \mathbb{R}^+} \sum_{j \in D_m} \int_{\mathbb{R}^n \setminus B_\varepsilon} dy k_{j,m}(y) f(x - y)\right]^{1/2} .\]

Since the right-hand side is now independent of \(\varepsilon\), it also majorises \(K^\# f\). The proof will be finished by showing that
\[\left\| \sup_{\varepsilon \in \mathbb{R}^+} \left(\sum_{j \in D_m} \int_{\mathbb{R}^n \setminus B_\varepsilon} dy k_{j,m}(y) f(x - y) \right) \right\|_2 \leq C \log(2 + m)m^{-1}\|f\|_2 ,\]
for then
\[\left\| \left[\sum_{m \in \mathbb{N}^*} m^{-2\beta} \sup_{\varepsilon \in \mathbb{R}^+} \sum_{j \in D_m} \int_{\mathbb{R}^n \setminus B_\varepsilon} dy k_{j,m}(y) f(x - y) \right]^{1/2} \right\|_2\]
\[= \left[\sum_{m \in \mathbb{N}^*} m^{-2\beta} \left\| \sup_{\varepsilon \in \mathbb{R}^+} \left(\sum_{j \in D_m} \int_{\mathbb{R}^n \setminus B_\varepsilon} dy k_{j,m}(y) f(x - y) \right) \right\|_2 \right]^{1/2}\]
\[\leq \left[\sum_{m \in \mathbb{N}^*} m^{-2\beta} C^2 \log^2(2 + m)m^{-2}\|f\|_2 \right]^{1/2} \leq C\|f\|_2 ,\]
as required.

Up to this point, our proof follows those of Calderón and Zygmund [3] and of Aguilera and Harboure [2]. Our approach now diverges from theirs, in that we have the machinery of the previous sections at our disposal.

By a theorem of Bochner, presented by Stein [15, p. 72], if
\[h_j(x) = Y_{j,m}(x')|x|^{-n}1_{\mathbb{R}^n \setminus B_\varepsilon}(x), \quad x \in \mathbb{R}^n ,\]
then \(\hat{h}_j(\xi) = g_m(\xi)Y_{j,m}(\xi')\), \(\xi \in \mathbb{R}^n\), for some radial function \(g_m\) in \(L^2(\mathbb{R}^n)\). On the other hand,
\[\hat{k}_{j,m}(\xi) = \gamma_{m,0}Y_{j,m}(\xi'), \quad \xi \in \mathbb{R}^n ,\]
(\(\gamma_{m,0}\) is defined in Lemma 1.1), and so \(h_j = \phi_m \ast k_{j,m}\) where \(\phi_m = \gamma_{m,0}^{-1}g_m\). Clearly \(\phi_m \in L^2(\mathbb{R}^n)\). Observe that
\[\sum_{j \in D_m} h_j \ast \tilde{k}_{j,m} = \sum_{j \in D_m} \phi_m \ast k_{j,m} \ast \tilde{k}_{j,m} .\]
and
\[
\sum_{j \in D_m} \left(k_{j,m} \ast \bar{k}_{j,m} \right)(\xi) = (-1)^m \gamma_{m,0}^2 \sum_{j \in D_m} Y_{j,m}(\xi) \bar{Y}_{j,m}(\xi)
\]
\[
= (-1)^m \gamma_{m,0}^2 d_m,
\]
and so
\[
\phi_m = (-1)^m \gamma_{m,0}^{-2} d_m^{-1} \sum_{j \in D_m} h_j \ast \bar{k}_{j,m}
\]
and
\[
\hat{\phi}_m(\xi) = \gamma_{m,0}^{-1} d_m^{-1} \sum_{j \in D_m} \hat{h}_j(\xi) \bar{Y}_{j,m}(\xi').
\]

As a consequence of (4), we see that \(\phi_m \) is \(C^\infty \) off \(S^{n-1} \). More importantly, by putting \(h_j = k_{j,m} \ast B \), we see that
\[
\phi_m = (-1)^m \gamma_{m,0}^{-2} d_m^{-1} \sum_{j \in D_m} \left(k_{j,m} \ast \bar{k}_{j,m} - h_j \ast \bar{k}_{j,m} \right)
\]
\[
= \delta_0 - (-1)^m \gamma_{m,0}^{-2} d_m^{-1} \sum_{j \in D_m} \hat{h}_j \ast \bar{k}_{j,m},
\]
\(\delta_0 \) being the Dirac measure at 0, from which it follows that
\[
\phi_m(x) = O(\|x\|^{-n-1}) \quad \text{if } |x| > 1,
\]
and in particular \(\phi_m \in L^1(\mathbb{R}^n) \).

Normalized dilation is such that \((\phi_m)_\varepsilon \ast k_{j,m} = k_{j,m} \ast \varepsilon B \), and so
\[
\sup_{\varepsilon \in \mathbb{R}^+} \left[\sum_{j \in D_m} \left| \int_{\mathbb{R}^n \setminus B} dy k_{j,m}(y) f(\cdot - y) \right|^2 \right]^{1/2}
\]
\[
= \sup_{\varepsilon \in \mathbb{R}^+} \left[\sum_{j \in D_m} \left| (\phi_m)_\varepsilon \ast k_{j,m} \ast f(\cdot) \right|^2 \right]^{1/2}.
\]

This maximal function may be treated using Theorem 2.1. It is necessary to calculate \(\int_{\mathbb{R}^n} dy \phi_m(y)|y|^{iu} \), which requires a little work.

First, by the properties of \(\phi_m \), Plancherel's theorem, and the formula (5), we have that
\[
\int_{\mathbb{R}^n} dy \phi_m(y)|y|^{iu} = \lim_{\delta \to 0+} \int_{\mathbb{R}^n} dy \phi_m(y)|y|^{iu-\delta}
\]
\[
= \lim_{\delta \to 0+} \int_{\mathbb{R}^n} d\xi \hat{\phi}_m(\xi) \gamma_{0,n+iu-\delta} |\xi|^{\delta-\delta-iu-n}
\]
\[
= \lim_{\delta \to 0+} d_m^{-1} \gamma_{m,0}^{-1} \gamma_{0,n+iu-\delta} \sum_{j \in D_m} \int_{\mathbb{R}^n} d\xi \hat{h}_j(\xi) \bar{Y}_{j,m}(\xi') |\xi|^{\delta-\delta-iu-n}.
\]

Continuing, by using Plancherel's theorem again, we find that

\[
\sum_{j \in D_m} \int_{\mathbb{R}^n} d\xi \hat{h}_j(\xi) \overline{Y}_{j,m}(\xi') |\xi|^{n-i\mu-n}
\]

\[
= \sum_{j \in D_m} \int_{\mathbb{R}^n} dy \hat{h}_j(y) (-1)^m \gamma_{m,n+i\mu-\delta} Y_{j,m}(y') |y'|^{i\mu-\delta}
\]

\[
= (-1)^m \gamma_{m,n+i\mu-\delta} \sum_{y \in D_m} \int_S dy' \int_1^{\infty} dt t^{i\mu-\delta-1} |Y_{j,m}(y')|^2
\]

\[
= (-1)^m \gamma_{m,n+i\mu-\delta} \omega d_m (\delta - i\mu)^{-1}.
\]

and consequently we may conclude that

\[
(2\pi\omega)^{-1} \int_{\mathbb{R}^n} dy \phi_m(y) |y|^{i\mu} = (2\pi)^{-1} (-1)^m \gamma_{m,n+i\mu} \gamma_{m,n+i\mu} (-i\mu)^{-1}
\]

\[
= a_u^{m}, \quad \text{say}.
\]

In order to apply Theorem 2.1, we must study \(a_u^m\). First, we consider its behaviour for small \(u (u \in J)\). Later we shall estimate \(|a_u^m|\) for large \(u (u \in \mathbb{R} \setminus J)\).

Let \(M\) be the integral part of \((m - 1)/2\), and let \(\delta = m - 2M\). Then, by the recurrence formula for the \(\Gamma\)-function,

\[
a_u^m = (4\pi)^{-m/2} \frac{\Gamma(n/2 + m/2)}{\Gamma(m/2)} \cdot \frac{\Gamma(n/2 + i\mu/2)}{\Gamma(1 - i\mu/2)} \cdot \frac{\Gamma(m/2 - i\mu/2)}{\Gamma(n/2 + m/2 + i\mu/2)}
\]

\[
= (4\pi)^{-m/2} \prod_{j=0}^{M-1} \frac{(n/2 + \delta/2 + j)(\delta/2 + j - i\mu/2)}{(\delta/2 + j)(n/2 + \delta/2 + j + i\mu/2)}
\]

\[
\frac{\Gamma(n/2 + \delta/2) \Gamma(n/2 + i\mu/2) \Gamma(\delta/2 - i\mu/2)}{\Gamma(\delta/2) \Gamma(1 - i\mu/2) \Gamma(n/2 + \delta/2 + i\mu/2)}
\]

\[
= \prod_{j=0}^{M-1} \frac{(n + \delta + 2j)(\delta + 2j - i\mu)}{(\delta + 2j)(n + \delta + 2j + i\mu)} \cdot a_j^\delta.
\]

Since \(\delta\) is either 1 or 2, \(a_j^\delta\) is analytic in \(J\). Evidently, if \(|u| \leq \pi\) and \(j \in \mathbb{N}\),

\[
\left| \frac{(n + \delta + 2j)(\delta + 2j - i\mu)}{(\delta + 2j)(n + \delta + 2j + i\mu)} \right| = \left| \frac{1 - i\mu/\delta + 2j}{1 + i\mu/\delta + 2j} \right| \left(1 + \frac{i\mu}{\delta + 2j} \right)^{-1}
\]

\[
\leq 1 + \left| \frac{i\pi}{\delta + 2j} \right| \leq 1 + 5(\delta + 2j)^{-2}.
\]

Similarly, for the same range of \(u\) and \(j\), for the derivative \((w.r.t. u)\), we have

\[
\left| \left[\frac{(n + \delta + 2j)(\delta + 2j - i\mu)}{(\delta + 2j)(n + \delta + 2j + i\mu)} \right]' \right| \leq 22(\delta + 2j)^{-1}.
\]

Consequently,

\[
\sup_{|u| \leq \pi} \left| \prod_{j=1}^{M} \frac{(n + \delta + 2j)(\delta + 2j - i\mu)}{(\delta + 2j)(n + \delta + 2j + i\mu)} \right| \leq C
\]
and
\[\sup_{|u| \leq \pi} \left| \prod_{j=1}^{M} \frac{(n + \delta + 2j)(\delta + 2j - iu)}{(\delta + 2j)(n + \delta + 2j + iu)} \right| \leq C \log(2 + m), \]
for some absolute constant \(C \). Elementary Fourier analysis now shows that it is possible to write
\[a_u^m = \int_{\mathbb{R}} d\mu(v) e^{-2\pi iuv}, \quad u \in J, \]
where \(|\mu(v)| \leq C \log(2 + m) \).

It is easiest to study \(a_u^m \) for \(u \) large by using the asymptotic formula for the \(\Gamma \)-function (see, for instance, E. T. Whittaker and G. N. Watson [20, 12.33]). The details of the estimation are rather tedious but straightforward, so we shall omit them. The fruits of our labours are the following inequalities:
\[|a_u^m| \leq C|u|^{-n/2 - 1} \quad \text{if} \quad |u| \leq m, \]
\[|a_u^m| \leq Cm^{-n/2}|u|^{-1} \quad \text{if} \quad |u| > m. \]

We may apply Theorem 2.1, taking \(p \) to be 2 and \(b(u) \) to be \(a_u^m \). It follows that
\[\left\| \sup_{\epsilon \in \mathbb{R}^*} \left[\sum_{j \in D_m} |(\phi_m) * f_j|^2 \right]^{1/2} \right\|_2 \leq C \log(2 + m) \left\| \sum_{j \in D_m} |k_{j,m} * f_j|^2 \right\|_2^{1/2} \]
\[\leq C \log(2 + m) m^{-1} \|f\|_2, \]
by Lemma 1.1. This is the estimate (3) needed to finish the proof. \(\Box \)

References

SCHOOL OF MATHEMATICS, UNIVERSITY OF NEW SOUTH WALES, KENSINGTON, N.S.W. 2033, AUSTRALIA

ISTITUTO DI MATEMATICA, VIA L. B. ALBERTI 4, 16132 GENOVA, ITALY