Estimates for operators in mixed weighted -spaces
Author:
Hans P. Heinig
Journal:
Trans. Amer. Math. Soc. 287 (1985), 483-493
MSC:
Primary 42B10; Secondary 44A10, 46M35, 47B38
DOI:
https://doi.org/10.1090/S0002-9947-1985-0768721-5
MathSciNet review:
768721
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A weighted Marcinkiewicz interpolation theorem is proved. If is simultaneously of weak type
,
;
and
,
certain weight functions, then
is bounded from
to
for
,
. The result is applied to obtain weighted estimates for the Laplace and Fourier transform, as well as the Riesz potential.
- [1] K. F. Andersen and H. P. Heinig, Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal. 14(4) (1983), 834-844. MR 704496 (85f:26012)
- [2] K. F. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1981), 9-26. MR 665888 (83k:42018)
- [3] John J. Benedetto and Hans P. Heinig, Weighted Hardy spaces and the Laplace transform; Proc. Harmonic Anal. Conf. (Cortona, Italy, 1982), Lecture Notes in Math., vol. 992, Springer-Verlag, pp. 240-277. MR 729358 (85j:44001)
- [4] J. S. Bradley, Hardy inequality with mixed norms, Canad. Math. Bull. 21 (1978), 405-408. MR 523580 (80a:26005)
- [5]
A. P. Calderon, Spaces between
and
and the Theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299. MR 0203444 (34:3295)
- [6] Michael G. Cowling and John F. Price, Time concentration versus bandwidth, preprint.
- [7] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, London and New York, 1952. MR 0046395 (13:727e)
- [8] Hans P. Heinig, Weighted norm inequalities for classes of operators, Indiana Univ. Math. J. 33 (1984), 573-582. MR 749315 (86c:42016)
- [9]
Lars Hörmander, Estimates of translation invariant operators in
-spaces, Acta Math. 104 (1960), 93-140. MR 0121655 (22:12389)
- [10] W. B. Jurkat and G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), 257-270. MR 733899 (85k:42040)
- [11] B. Muckenhoupt, Weighted norm inequalities for the Fourier transform, Trans. Amer. Math. Soc. 276 (1983), 729-742. MR 688974 (84m:42019)
- [12] -, A note on two weight function conditions for a Fourier transform inequality, Proc. Amer. Math. Soc. 88 (1983), 97-100. MR 691285 (84b:42011)
- [13] Y. Sagher, Real interpolation with weights, Indiana Univ. Math. J. 30 (1981), 113-121. MR 600037 (82e:46045)
- [14] Eric Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), 329-337. MR 719673 (85f:26013)
- [15] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B10, 44A10, 46M35, 47B38
Retrieve articles in all journals with MSC: 42B10, 44A10, 46M35, 47B38
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1985-0768721-5
Article copyright:
© Copyright 1985
American Mathematical Society