Epimorphically closed permutative varieties

Author:
N. M. Khan

Journal:
Trans. Amer. Math. Soc. **287** (1985), 507-528

MSC:
Primary 20M07

DOI:
https://doi.org/10.1090/S0002-9947-1985-0768723-9

MathSciNet review:
768723

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for semigroups all permutation identities are preserved under epis and that all subvarieties of the permutative variety defined by any permutation identity

**[1]**A. Bulazewska and J. Krempka,*On epimorphisms in the category of all associative rings*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**23**(1975). MR**0396674 (53:536)****[2]**W. Burgess,*The meaning of mono and epi in some familiar categories*, Canad. Math. Bull.**8**(1965). MR**0191934 (33:161)****[3]**A. H. Clifford and G. B. Preston,*The algebraic theory of semigroups*, Vol. 1, Math. Surveys, No. 7, Amer. Math. Soc., Providence, R. I., 1961; Vol. II, 1967.**[4]**B. J. Gardner,*A note on ring epimorphisms and polynomial identities*, Comment. Math. Univ. Carolin.**20**(1979). MR**539558 (80e:16013)****[5]**P. M. Higgins,*Saturated and epimorphically closed varieties of semigroups*, J. Austral. Math. Soc. Ser. A**36**(1984), 153-175. MR**725743 (85f:20052)****[6]**-,*Epimorphisms, permutation identities and finite semigroups*, Semigroup Forum (to appear). MR**742126 (85k:20173)****[7]**J. M. Howie,*An introduction to semigroup theory*, London Math. Soc. Monographs, vol. 7, Academic Press, 1976. MR**0466355 (57:6235)****[8]**J. M. Howie and J. R. Isbell,*Epimorphisms and dominions*. II, J. Algebra**6**(1967), 7-21. MR**0209203 (35:105b)****[9]**J. R. Isbell,*Epimorphisms and dominions*, Proc. Conf. on Categorical Algebra (La Jolla, 1965), Lange & Springer, Berlin, 1966, pp. 232-246. MR**0209202 (35:105a)****[10]**N. M. Khan,*Epimorphisms, dominions and varieties of semigroups*, Semigroup Forum**25**(1982), 331-337. MR**679286 (84c:20065)****[11]**-,*On saturated varieties and consequences of permutation identities*. J. Austral. Math. Soc. (to appear).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20M07

Retrieve articles in all journals with MSC: 20M07

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1985-0768723-9

Keywords:
Semigroup,
variety,
epimorphism,
dominion

Article copyright:
© Copyright 1985
American Mathematical Society