Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A weighted inequality for the maximal Bochner-Riesz operator on $ {\bf R}\sp 2$


Author: Anthony Carbery
Journal: Trans. Amer. Math. Soc. 287 (1985), 673-680
MSC: Primary 42B10
DOI: https://doi.org/10.1090/S0002-9947-1985-0768732-X
MathSciNet review: 768732
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $ f \in \mathcal{S}({{\mathbf{R}}^2})$, let $ (T_R^\alpha f)\hat \emptyset (\xi ) = (1 - \vert\xi {\vert^2}{R^2})_ + ^\alpha \hat f(\xi )$. It is a well-known theorem of Carleson and Sjölin that $ T_1^\alpha $ defines a bounded operator on $ {L^4}$ if $ \alpha > 0$. In this paper we obtain an explicit weighted inequality of the form

$\displaystyle \int {\mathop {\sup }\limits_{0 < R < \infty } \vert T_R^\alpha f(x){\vert^2}w(x)\;dx \leqslant \int {\vert f{\vert^2}{P_\alpha }w(x)\;dx,} } $

with $ {P_\alpha }$ bounded on $ {L^2}$ if $ \alpha > 0$. This strengthens the above theorem of Carleson and Sjölin. The method gives information on the maximal operator associated to general suitably smooth radial Fourier multipliers of $ {{\mathbf{R}}^2}$.

References [Enhancements On Off] (What's this?)

  • [1] A. Carbery, The boundedness of the maximal Bochner-Riesz operator on $ {L^4}({{\mathbf{R}}^2})$, Duke Math. J. 50 (1983), 409-416. MR 705033 (84m:42025)
  • [2] -, Radial Fourier multipliers and associated maximal functions, Conf. Harmonic Analysis (El Escorial 1983), preprint.
  • [3] L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287-299. MR 0361607 (50:14052)
  • [4] A. Córdoba, The multiplier problem for the polygon, Ann. of Math. (2) 105 (1977), 581-588. MR 0438022 (55:10943)
  • [5] -, An integral inequality for the disc multiplier, preprint.
  • [6] C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44-52. MR 0320624 (47:9160)
  • [7] J. L. Rubio de Francia, Weighted norm inequalities and vector valued inequalities, Proc. Conf. Harmonic Analysis (Minneapolis, 1981), Lecture Notes in Math., vol. 908, Springer-Verlag, Berlin and New York, 1982, pp. 86-101. MR 654181 (83h:42025)
  • [8] E. M. Stein, Some problems in harmonic analysis, Proc. Sympos. Pure Math., vol. 35, Part I, Amer. Math. Soc., Providence, R. I., 1979, pp. 3-20. MR 545235 (80m:42027)
  • [9] -, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B10

Retrieve articles in all journals with MSC: 42B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0768732-X
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society