Estimates of the harmonic measure of a continuum in the unit disk
Authors:
Carl H. FitzGerald, Burton Rodin and Stefan E. Warschawski
Journal:
Trans. Amer. Math. Soc. 287 (1985), 681685
MSC:
Primary 30C85; Secondary 31A15
MathSciNet review:
768733
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The harmonic measure of a continuum in the unit disk is estimated from below in two ways. The first estimate is in terms of the angle subtended by the continuum as viewed from the origin. This result is a dual to the Milloux problem. The second estimate is in terms of the diameter of the continuum. This estimate was conjectured earlier as a strengthening of a theorem of D. Gaier. In preparation for the proofs several lemmas are developed. These lemmas describe some properties of the Riemann mapping function of a disk with radial incision onto a disk.
 [1]
Lars
V. Ahlfors, Conformal invariants: topics in geometric function
theory, McGrawHill Book Co., New YorkDüsseldorfJohannesburg,
1973. McGrawHill Series in Higher Mathematics. MR 0357743
(50 #10211)
 [2]
K.
F. Barth, D.
A. Brannan, and W.
K. Hayman, Research problems in complex analysis, Bull. London
Math. Soc. 16 (1984), no. 5, 490–517. MR 751823
(86b:30004), http://dx.doi.org/10.1112/blms/16.5.490
 [3]
Dieter
Gaier, Estimates of conformal mappings near the boundary,
Indiana Univ. Math. J. 21 (1971/72), 581–595. MR 0293072
(45 #2151)
 [4]
Dieter
Gaier, A note on Hall’s lemma,
Proc. Amer. Math. Soc. 37 (1973), 97–99. MR 0310231
(46 #9333), http://dx.doi.org/10.1090/S00029939197303102310
 [5]
W.
K. Hayman, On a theorem of Tord Hall, Duke Math. J.
41 (1974), 25–26. MR 0335833
(49 #611)
 [6]
James
A. Jenkins, On a lemma of Tord Hall, Bull. Inst. Math. Acad.
Sinica 2 (1974), 371–375. Collection of articles in
celebration of the sixtieth birthday of Ky Fan. MR 0382627
(52 #3509)
 [7]
James
A. Jenkins, On a problem concerning harmonic measure, Math. Z.
135 (1973/74), 279–283. MR 0335787
(49 #567)
 [8]
M. Lavrientiev, On the theory of conformal transformations Trudy Mat. Inst. Steklov. 5 (1934), 159245. (Russian)
 [9]
Luby
Liao, Certain extremal problems concerning module and harmonic
measure, J. Analyse Math. 40 (1981), 1–42
(1982). MR
659784 (83i:30022), http://dx.doi.org/10.1007/BF02790155
 [10]
B.
J. Maitland, A note on functions regular and bounded in the unit
circle and small at a set of points near the circumference of the
circle, Proc. Cambridge Philos. Soc. 35 (1939),
382–388. MR 0000679
(1,112e)
 [1]
 L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGrawHill, New York, 1973. MR 0357743 (50:10211)
 [2]
 K. F. Barth, D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc. 16 (1984), 490517. MR 751823 (86b:30004)
 [3]
 D. Gaier, Estimates of conformal mapping near the boundary, Indiana Univ. Math. J. 21 (1972), 581595. MR 0293072 (45:2151)
 [4]
 , A note on Hall's Lemma, Proc. Amer. Math. Soc. 37 (1973), 9799. MR 0310231 (46:9333)
 [5]
 W. K. Hayman, On a theorem of Tord Hall, Duke Math. J. 41 (1974), 2526. MR 0335833 (49:611)
 [6]
 J. A. Jenkins, On a lemma of Tord Hall, Bull. Inst. Math. Acad. Sinica 2 (1979), 371375. MR 0382627 (52:3509)
 [7]
 , On a problem concerning harmonic measure, Math. Z. 135 (1974), 279283. MR 0335787 (49:567)
 [8]
 M. Lavrientiev, On the theory of conformal transformations Trudy Mat. Inst. Steklov. 5 (1934), 159245. (Russian)
 [9]
 L. Liao, Certain extremal problems concerning module and harmonic measure, J. Anal. Math. 40 (1981), 142. MR 659784 (83i:30022)
 [10]
 B. J. Maitland, A note on functions regular and bounded in the unit circle and small at a set of points near the circumference of the circle, Proc. Cambridge Philos. Soc. 35 (1939), 382388. MR 0000679 (1:112e)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
30C85,
31A15
Retrieve articles in all journals
with MSC:
30C85,
31A15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198507687331
PII:
S 00029947(1985)07687331
Article copyright:
© Copyright 1985
American Mathematical Society
