Some estimates for nondivergence structure, second order elliptic equations

Author:
Lawrence C. Evans

Journal:
Trans. Amer. Math. Soc. **287** (1985), 701-712

MSC:
Primary 35J25; Secondary 35B45

MathSciNet review:
768735

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain various formal estimates for solutions of nondivergence structure, second order, uniformly elliptic . These include interior lower bounds and also gradient estimates in , for some .

**[1]**Patricia Bauman,*Equivalence of the Green’s functions for diffusion operators in 𝑅ⁿ: a counterexample*, Proc. Amer. Math. Soc.**91**(1984), no. 1, 64–68. MR**735565**, 10.1090/S0002-9939-1984-0735565-4**[2]**Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou,*Asymptotic analysis for periodic structures*, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR**503330****[3]**Lawrence C. Evans,*On solving certain nonlinear partial differential equations by accretive operator methods*, Israel J. Math.**36**(1980), no. 3-4, 225–247. MR**597451**, 10.1007/BF02762047**[4]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****[5]**S. Hildebrandt,*Nonlinear elliptic systems and harmonic mappings*, Vorlesungsreiche SFB 72, Universität Bonn, 1980.**[6]**N. V. Krylov and M. V. Safonov,*An estimate of the probability that a diffusion hits a set of positive measure*, Soviet Math. Dokl.**20**(1979), 253-256.**[7]**-,*A certain property of solutions of parabolic equations with measurable coefficients*, Math. USSR-Izv.**16**(1981), 151-164.**[8]**Keith Miller,*Nonexistence of an a priori bound at the center in terms of an 𝐿₁ bound on the boundary for solutions of uniformly elliptic equations on a sphere*, Ann. Mat. Pura Appl. (4)**73**(1966), 11–16. MR**0206489****[9]**M. V. Safonov,*Harnack's inequality for elliptic equations and the Hölder property of their solutions*, J. Soviet Math.**21**(1983), 851-863.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35J25,
35B45

Retrieve articles in all journals with MSC: 35J25, 35B45

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1985-0768735-5

Keywords:
Second order elliptic ,
nondivergence structure,
mean sojourn time

Article copyright:
© Copyright 1985
American Mathematical Society