Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Analytic operator algebras (factorization and an expectation)


Author: Baruch Solel
Journal: Trans. Amer. Math. Soc. 287 (1985), 799-817
MSC: Primary 47D25; Secondary 46L99
DOI: https://doi.org/10.1090/S0002-9947-1985-0768742-2
MathSciNet review: 768742
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a $ \sigma $-finite von Neumann algebra and $ {\{ {\alpha _t}\} _{t \in T}}$ a periodic flow on $ M$. The algebra of analytic operators in $ M$ is $ \{ a \in M:{\text{sp}_\alpha }(a) \subseteq {{\mathbf{Z}}_ + }\} $ and is denoted $ {H^\infty }(\alpha )$. We prove that every invertible operator $ a \in {H^\infty }(\alpha )$ can be written as $ a = ub$, where $ u$ is unitary in $ M$ and $ b \in {H^\infty }(\alpha ) \cap {H^\infty }{(\alpha )^{ - 1}}$. We also prove inner-outer factorization results for $ a \in {H^\infty }(\alpha )$.

Another result represents $ {H^\infty }(\alpha )$ as the image of a certain nest subalgebra (of a von Neumann algebra that contains $ M$) via a conditional expectation. As corollaries we prove a distance formula and an interpolation result for the case where $ M$ is an injective von Neumann algebra.


References [Enhancements On Off] (What's this?)

  • [1] W. B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578-642. MR 0223899 (36:6946)
  • [2] -, On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217-243. MR 0348518 (50:1016)
  • [3] -, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233. MR 0383098 (52:3979)
  • [4] J. Dixmier, Von Neumann algebras, North-Holland, Amsterdam, 1981. MR 641217 (83a:46004)
  • [5] S. Kawamura and J. Tomiyama, On subdiagonal algebras associated with flows in operator algebras, J. Math. Soc. Japan 29 (1977), 73-90. MR 0454650 (56:12899)
  • [6] R. I. Loebl and P. S. Muhly, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29 (1978), 214-252. MR 504460 (81h:46080)
  • [7] M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products (invariant subspaces and maximality), Trans. Amer. Math. Soc. 248 (1979), 381-409. MR 522266 (80j:46101b)
  • [8] -, Nonselfadjoint crossed products. II, J. Math. Soc. Japan 33 (1981), 485-495. MR 620285 (83a:46071)
  • [9] K.-S. Saito, The Hardy spaces associated with a periodic flow on a von Neumann algebra, Tôhoku Math. J. 29 (1977), 69-75. MR 0440381 (55:13256)
  • [10] -, Invariant subspaces for finite maximal subdiagonal algebras, Pacific J. Math. 93 (1981), 431-434. MR 623573 (82m:46068)
  • [11] -, Nonselfadjoint subalgebras by compact abelian actions on finite von Neumann algebras, Tôhoku Math. J. 34 (1982), 485-494. MR 685417 (84d:46093)
  • [12] -, Spectral resolutions of invariant subspaces by compact abelian group actions on von Neumann algebras, preprint.
  • [13] B. Solel, The invariant subspace structure of nonselfadjoint crossed products, Trans. Amer. Math. Soc. 279 (1983), 825-840. MR 709586 (85d:46091)
  • [14] -, Invariant subspaces for algebras of analytic operators associated with a periodic flow on a finite von Neumann algebra, preprint.
  • [15] -, Algebras of analytic operators associated with a periodic flow on a von Neumann algebra, preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D25, 46L99

Retrieve articles in all journals with MSC: 47D25, 46L99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0768742-2
Keywords: Flow, analytic operators with respect to a flow, inner-outer factorization, expectation, distance estimate, interpolation
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society