Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Banach spaces with the $ L\sp 1$-Banach-Stone property


Author: Peter Greim
Journal: Trans. Amer. Math. Soc. 287 (1985), 819-828
MSC: Primary 46E40; Secondary 46B20
DOI: https://doi.org/10.1090/S0002-9947-1985-0768743-4
MathSciNet review: 768743
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It has previously been shown that separable Banach spaces $ V$ with trivial $ L$-structure have the $ {L^1}$-Banach-Stone property, i.e. every surjective isometry between two Bochner spaces $ {L^1}({\mu _i},V)$ induces an isomorphism of the two measure algebras. We remove the separability restriction, employing the topology of the measure algebra's Stonean space.

The result is achieved via a complete description of the $ L$-structure of $ {L^1}(\mu ,V)$.


References [Enhancements On Off] (What's this?)

  • [1] S. Banach, Théorie des opérations linéaires, Monogr. Mat. PWN, Warsaw, 1932.
  • [2] E. Behrends, $ M$-structure and the Banach-Stone theorem, Lecture Notes in Math., vol. 736, Springer-Verlag, Berlin and New York, 1979. MR 547509 (81b:46002)
  • [3] E. Behrends, et al., $ {L^p}$-structure in real Banach spaces, Lecture Notes in Math., vol. 613, Springer-Verlag, Berlin and New York, 1977. MR 0626051 (58:30082)
  • [4] M. Cambern, The isometries of $ {L^p}(X,K)$, Pacific J. Math. 55 (1974), 9-17. MR 0370172 (51:6401)
  • [5] -, Isometries of measurable functions, Bull. Austral. Math. Soc. 24 (1981), 13-26. MR 630780 (83a:47037)
  • [6] M. Cambern and P. Greim, The dual of a space of vector measures, Math. Z. 180 (1982), 373-378. MR 664522 (83j:46041)
  • [7] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977. MR 0453964 (56:12216)
  • [8] N. Dunford and J. T. Schwartz, Linear operators. Part III, Wiley, 1971. MR 1009164 (90g:47001c)
  • [9] R. J. Fleming and J. E. Jamison, Classes of operators on vector-valued integration spaces, J. Austral. Math. Soc. Ser. A 24 (1977), 129-138. MR 0482330 (58:2403)
  • [10] P. Greim, The centralizer of Bochner $ {L^\infty }$-spaces, Math. Ann. 260 (1982), 463-468. MR 670194 (83m:46061)
  • [11] -, Banach-Stone theorems for non-separably valued Bochner $ {L^\infty }$-spaces, Rend. Circ. Mat. Palermo (2), Suppl. 2 (1982), 123-129.
  • [12] -, Hilbert spaces have the Banach-Stone property for Bochner spaces, Bull. Austral. Math. Soc. 27 (1983), 121-128. MR 696650 (84g:46051)
  • [13] -, Isometries and $ {L^p}$-structure of separably valued Bochner $ {L^p}$-spaces, Measure Theory and Its Applications (Proc. Conf. Sherbrooke, 1982). Lecture Notes in Math., vol. 1033, Springer-Verlag, Berlin and New York, 1983, pp. 209-218.
  • [14] B. Hirsberg, $ M$-ideals in complex function spaces and algebras, Israel J. Math. 12 (1972), 133-146. MR 0315451 (47:4000)
  • [15] J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466. MR 0105017 (21:3764)
  • [16] Y. Mibu, Relations between measure and topology in some Boolean spaces, Proc. Imp. Acad. Tokyo 20 (1944), 454-458. MR 0014405 (7:279h)
  • [17] D. Sentilles, Decomposition of weakly measurable functions, Indiana Univ. Math. J. 32 (1983), 425-437. MR 697647 (85b:28008)
  • [18] A. R. Sourour, The isometries of $ {L^p}(\Omega ,X)$, J. Funct. Anal. 30 (1978), 276-285. MR 515230 (80c:46048)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E40, 46B20

Retrieve articles in all journals with MSC: 46E40, 46B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0768743-4
Keywords: Banach-Stone theorem, Bochner $ {L^p}$-space, centralizer, hyperstonean, integral module, $ {L^p}$-structure
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society