A REFLEXIVITY THEOREM FOR WEAKLY CLOSED
SUBSPACES OF OPERATORS

BY

HARI BERCOCI1

Abstract. It was proved in [4] that the ultraweakly closed algebras generated by
certain contractions on Hilbert space have a remarkable property. This property, in
conjunction with the fact that these algebras are isomorphic to H^∞, was used in [3]
to show that such ultraweakly closed algebras are reflexive. In the present paper we
prove an analogous result that does not require isomorphism with H^∞, and applies
even to linear spaces of operators. Our result contains the reflexivity theorems of [3,
2 and 9] as particular cases.

Let $L(\mathcal{H})$ denote the algebra of (linear, bounded) operators acting on the Hilbert
space \mathcal{H}, and let \mathcal{M} denote a linear subspace of $L(\mathcal{H})$. Then \mathcal{M} is endowed with the
weak and ultraweak topologies that it inherits from $L(\mathcal{H})$ (cf. [6, §15]). For two
arbitrary vectors $x, y \in \mathcal{H}$ we can define the (ultra) weakly continuous functional
$x \otimes y$ on \mathcal{M} by

$$ [x \otimes y](A) = \langle Ax, y \rangle, \quad A \in \mathcal{M}, $$

where $\langle \cdot, \cdot \rangle$ stands for the scalar product in \mathcal{H}.

Definition 1. Let n be a natural number, $n \geq 1$. The subspace \mathcal{M} has property
(B^n) [respectively (A^n)] if for every positive number ε there exists a positive number
$\delta = \delta(\varepsilon, n)$ such that for every system $\{\phi_{ij}; 1 \leq i, j \leq n\}$ of weakly [respectively
ultraweakly] continuous functionals on \mathcal{M} and every system $\{x_i, y_j; 1 \leq i, j \leq n\}$ of
vectors in \mathcal{H} satisfying the inequalities $\|\phi_{ij} - [x_i \otimes y_j]\| < \delta$ there exist vectors
$\{x_i', y_j'; 1 \leq i, j \leq n\}$ in \mathcal{H} such that

$$ \phi_{ij} = [x_i' \otimes y_j'], \quad 1 \leq i, j \leq n, $$

and

$$ \|x_i - x_i'\| < \varepsilon, \quad \|y_j - y_j'\| < \varepsilon, \quad 1 \leq i, j \leq n. $$

Since every weakly continuous functional on \mathcal{M} is also ultraweakly continuous,
property (B^n) is weaker than (A^n) (ADDED IN PROOF. It was pointed out by C.
Apostol that (B^n) and (A^n) are in fact equivalent. This fact is not used below.)

We recall now from [8] that a linear subspace \mathcal{M} of $L(\mathcal{H})$ is said to be reflexive if
it contains every operator $T \in L(\mathcal{H})$ with the property that $Tx \in (\mathcal{M}x)^-$ for every

Received by the editors January 31, 1984.
1980 Mathematics Subject Classification. Primary 47C05.
1 The author was partially supported by a grant from the National Science Foundation.

©1985 American Mathematical Society
0002-9947/85 $1.00 + $.25 per page
x ∈ ℋ. Of course, reflexive subspaces are weakly closed. This definition coincides with the usual definition (ℳ = Alg Lat ℳ) if ℳ is a subalgebra of ℒ(ℋ).

We state now the main result of this paper.

Theorem 2. Let ℳ be a weakly closed subspace of ℒ(ℋ). If ℳ has property (Bn) for every natural number n, then ℳ is reflexive. Moreover, every weakly closed subspace of ℳ is also reflexive.

Before going into the proof, we relate this result with the reflexivity theorem from [3]. It was proved in [4] that, if T is a (BCP)-operator, the ultraweakly closed algebra AT generated by T has property (A") for every n = 1, 2,... The reflexivity of AT follows then from Theorem 2 and the following lemma.

Lemma 3. Let ℳ be a linear subspace of ℒ(ℋ) having property (A`). Then the weak and ultraweak closures of ℳ coincide, and the weak and ultraweak topologies coincide on the weak closure of ℳ.

Proof. Since every ultraweakly continuous functional on ℳ extends continuously to the ultraweak closure of ℳ, there is no loss of generality in assuming that ℳ is ultraweakly closed. Let δ = δ(1, 1) be as in Definition 1, and let φ be an arbitrary ultraweakly continuous functional on ℳ. Then ||δφ/(2||φ||) - [0 ® 0|| < δ so that we can find vectors x' and y' such that ||x'|| < 1, ||y'|| < 1 and δφ/(2||φ||) = [x' ® y'] or, equivalently, φ = [x ® y] with x = (2||φ||/δ)1/2x', y = (2||φ||/δ)1/2y'. Thus we can write φ as [x ® y] with ||x|| < (2/δ)1/2||φ||1/2, ||y|| < (2/δ)1/2||φ||1/2. We can now apply, e.g., the proof of [3, Theorem 1] to conclude that ℳ is weakly closed and the weak and ultraweak topologies coincide on ℳ.

We have therefore the following consequence of Theorem 2, which also implies the reflexivity results of [2 and 9].

Corollary 4. Let ℳ be an ultraweakly closed subspace of ℒ(ℋ). If ℳ has property (B") for every natural number n, then ℳ is weakly closed and reflexive. Moreover, every weakly closed subspace of ℳ is also reflexive.

For the proof of Theorem 2, we need two lemmas. The first was proved in [3] for the case in which ℳ is a weakly closed algebra. The proof for linear subspaces of ℒ(ℋ) is identical (and easy) so we content ourselves with the statement.

Lemma 5. Let ℳ be a linear subspace of ℒ(ℋ). An operator T ∈ ℒ(ℋ) is in the weak closure of ℳ if and only if for every natural n and every system {xₙ, yₙ: 1 ≤ i ≤ n} of vectors in ℋ such that \(Σₙ=xₙ ® yₙ = 0 \), we have \(Σₓₙ=1(Txₙ, yₙ) = 0 \).

Lemma 6. Let ℳ be a linear subspace of ℒ(ℋ). Assume that ℳ has property (B") for every natural number n. Then for every natural number n, every system \{xₙ, yₙ: 1 ≤ i ≤ n\} of vectors in ℋ and every ε > 0, there exist vectors \{xᵢⱼ, yᵢⱼ: 1 ≤ i, j ≤ n\} such that \([xᵢⱼ ® yᵢⱼ] = δᵢⱼ[xᵢ ® yᵢ], \) 1 ≤ i, j, k, l ≤ n, and \(||xᵢ - xᵢⱼ|| < ε, ||yⱼ - yᵢⱼ|| < ε, \) 1 ≤ i, j ≤ n. (Here \(δᵢⱼ \) denotes, as usual, Kronecker's symbol.)
WEAKLY CLOSED SUBSPACES OF OPERATORS

PROOF. Let $\delta = \delta(\epsilon, n^2)$ be as in Definition 1. Set $$\eta = \min\{\delta/(2||x_i \otimes y_k||): [x_i \otimes y_k] \neq 0\}$$ and define $\phi_{i,j,k,l} = 0$ if $j \neq l$, $\phi_{i,k} = [x_i \otimes y_k]$, $\phi_{i,j} = \eta[x_i \otimes y_k]$, $j \geq 2$. The vectors \(\{x_{ij}^0, y_{ij}^0: 1 \leq i, j \leq n\}\) defined by $x_{ij}^0 = \delta_{ij}x_i$, $y_{ij}^0 = \delta_{ij}y_i$, $1 \leq i, j \leq n$, obviously satisfy the inequalities $$||\phi_{ij,k,l} - \frac{x_{ij}^0 \otimes y_{ij}^0}{\phi_{ij,k,l}}|| < \delta, \quad 0 \leq i, j, k, l \leq n,$$ and therefore, by property (B,\(n^2\)), we can find vectors \(\{x_{ij}^0, y_{ij}^0: 1 \leq i, j \leq n\}\) in \(\mathcal{H}\) such that $$\phi_{ij,k,l} = \frac{x_{ij}^0 \otimes y_{ij}^0}{\phi_{ij,k,l}}, \quad 0 \leq i, j, k, l \leq n,$$ and $||x_{ij}^0 - x_{ij}|| < \epsilon$, $||y_{ij}^0 - y_{ij}|| < \epsilon$, $0 \leq i, j \leq n$. Then the vectors \(\{x_{ij}, y_{ij}: 1 \leq i, j \leq n\}\) defined by $x_{ij} = x_{ij}^0$, $y_{ij} = y_{ij}^0$, $x_{ij} = \eta^{-1/2}x_{ij}^0$, $y_{ij} = \eta^{-1/2}y_{ij}^0$, $1 \leq i \leq n, 2 \leq j \leq n$, satisfy the requirements of the lemma.

PROOF OF THEOREM 2. Let $T \in \mathcal{L}(\mathcal{H})$ satisfy the property that $Tx \in (\mathcal{M}x)^{-}$ for every $x \in \mathcal{H}$. We first note that the equality $[x \otimes y] = 0$, $x, y \in \mathcal{H}$, means that y is orthogonal to $(\mathcal{M}x)^{-}$, and hence it implies $\langle Tx, y \rangle = 0$.

In order to show that $T \in \mathcal{M}$, we must prove, according to Lemma 5, that the equality $\sum_{i=1}^{n}[x_i \otimes y_i] = 0$, $x_i, y_i \in \mathcal{H}$, $1 \leq i \leq n$, implies $\sum_{i=1}^{n}\langle Tx_i, y_i \rangle = 0$. By what has just been said, this property is satisfied for $n = 1$. Assume therefore that $n \geq 2$, $x_i, y_i \in \mathcal{H}$, $1 \leq i \leq n$, and $\sum_{i=1}^{n}[x_i \otimes y_i] = 0$. For every $\epsilon > 0$ we can find, using Lemma 6, vectors $x_{ij} = x_{ij}(\epsilon), y_{ij} = y_{ij}(\epsilon), 0 \leq i, j \leq n$, satisfying

1. $[x_{ij} \otimes y_{kl}] = \delta_{ij}[x_i \otimes y_k]$, $1 \leq i, j, k, l \leq n,$

and

2. $||x_i - x_{ii}|| = ||x_i - x_{ii}(\epsilon)|| < \epsilon$, $1 \leq i, j \leq n.$

We now remark that by (1)

$$\sum_{i=1}^{n}x_{ii} \otimes \sum_{i=1}^{n}y_{ii} = \sum_{i=1}^{n}[x_{ii} \otimes y_{ii}] + \sum_{i \neq j}[x_{ii} \otimes y_{jj}]$$

and therefore

$$\sum_{i=1}^{n}[x_{ii} \otimes y_{ii}] = 0$$

and therefore

$$\langle T\left(\sum_{i=1}^{n}x_{ii}\right) , \sum_{i=1}^{n}y_{ii} \rangle = 0.$$

Since $[x_{ii} \otimes y_{jj}] = 0$ for $i \neq j$, we also have $\langle Tx_{ii}, y_{jj} \rangle = 0$ for $i \neq j$ so that (3) can be rewritten as

$$\sum_{i=1}^{n}\langle Tx_{ii}, y_{ii} \rangle = 0.$$
Assume now that \(i \neq 1 \). We have by (1)
\[
\left((x_{ii} - x_{i1}) \otimes (y_{ii} + y_{i1}) \right) = \left[x_{ii} \otimes y_{ii} \right] - \left[x_{i1} \otimes y_{i1} \right] + \left[x_{ii} \otimes y_{i1} \right] - \left[x_{i1} \otimes y_{ii} \right]
\]
and therefore
\[
0 = \left< T(x_{ii} - x_{i1}), y_{ii} + y_{i1} \right> = \left< Tx_{ii}, y_{ii} \right> - \left< Tx_{i1}, y_{i1} \right> + \left< Tx_{ii}, y_{i1} \right> - \left< Tx_{i1}, y_{ii} \right>.
\]
The last two terms are zero because \([x_{ii} \otimes y_{i1}] = [x_{i1} \otimes y_{ii}] = 0 \) and we conclude that \(\left< Tx_{ii}, y_{i1} \right> = \left< Tx_{i1}, y_{ii} \right> \). Therefore (4) can now be written as \(\sum_{i=1}^{n} \left< Tx_{i1}, y_{ii} \right> = 0 \). We now let \(\epsilon \) approach zero. We have \(\lim_{\epsilon \to 0} x_{i1}(\epsilon) = x_{i1}, \lim_{\epsilon \to 0} y_{i1}(\epsilon) = y_{i1} \) so that
\[
\sum_{i=1}^{n} \left< Tx_{i1}(\epsilon), y_{ii}(\epsilon) \right> = \lim_{\epsilon \to 0} \sum_{i=1}^{n} \left< Tx_{i1}(\epsilon), y_{ii}(\epsilon) \right> = 0
\]
and the reflexivity of \(\mathcal{M} \) is proved by Lemma 5. The last statement of the theorem follows from [8, Theorem 2.3] (cf. also [7]).

We conclude with a condition implying property \((A_{\infty}')\) and which is sometimes easier to verify. For an arbitrary linear subspace \(\mathcal{M} \) of \(\mathcal{L}(\mathcal{H}) \) we will denote by \(\mathcal{M}_{*} \) the Banach space of all ultraweakly continuous functionals on \(\mathcal{M} \). It is well known that the dual space of \(\mathcal{M}_{*} \) coincides with the ultraweak closure of \(\mathcal{M} \); we will not use this fact here. The following two definitions were given in [1] for ultraweakly closed algebras \(\mathcal{M} \) (cf. [1, Definitions 1.4 and 1.5]).

Definition 7. Suppose \(\mathcal{M} \subset \mathcal{L}(\mathcal{H}) \) is a linear subspace and \(0 \leq \theta < +\infty \). We denote by \(X_{\theta}(\mathcal{M}) \) the set of all \(\phi \in \mathcal{M}_{*} \) such that there exist sequences \(\{ x_{i} \}_{i=1}^{\infty} \) and \(\{ y_{i} \}_{i=1}^{\infty} \) in \(\mathcal{H} \) satisfying the following conditions:
\[
\|x_{i}\| \leq 1, \quad \|y_{i}\| \leq 1, \quad 1 \leq i \leq \infty,
\]
\[
\limsup_{i \to \infty} \|\phi - [x_{i} \otimes y_{i}]\| \leq \theta,
\]
and
\[
\lim_{i \to \infty} \left(\|x_{i} \otimes z\| + \|z \otimes x_{i}\| + \|y_{i} \otimes z\| + \|z \otimes y_{i}\| \right) = 0, \quad z \in \mathcal{H}.
\]

Definition 8. Suppose \(\mathcal{M} \subset \mathcal{L}(\mathcal{H}) \) is a linear subspace and \(0 \leq \theta < \gamma < +\infty \). We say that \(\mathcal{M} \) has property \(X_{\theta,\gamma} \) if the closed absolutely convex hull of the set \(X_{\theta}(\mathcal{M}) \) contains the closed ball of radius \(\gamma \) centered at the origin in \(\mathcal{M}_{*} \):
\[
\overline{\text{aco}} \ X_{\theta}(\mathcal{M}) \supset \{ \phi \in \mathcal{M}_{*}: \|\phi\| \leq \gamma \}.
\]

The following result coincides with [1, Theorem 1.9] if \(\mathcal{M} \) is an ultraweakly closed algebra. However, neither the algebra structure, nor the ultraweak closedness of \(\mathcal{M} \) has been used in the proof of that theorem, so that we refer to [1] for the proof.

Theorem 9. Suppose \(\mathcal{M} \subset \mathcal{L}(\mathcal{H}) \) is a linear subspace with property \(X_{\theta,\gamma} \) for some \(\gamma > \theta \geq 0 \). Then for every \(\phi \in \mathcal{M}_{*} \) there exist sequences \(\{ x_{i} \}_{i=1}^{\infty} \) and \(\{ y_{i} \}_{i=1}^{\infty} \) in \(\mathcal{H} \) such that
\[
\phi = [x_{i} \otimes y_{i}], \quad 1 \leq i < \infty,
\]
\[
\limsup_{i \to \infty} \|x_{i}\| \leq (\gamma - \theta)^{-1/2}\|\phi\|^{1/2}, \quad \limsup_{i \to \infty} \|y_{i}\| \leq (\gamma - \theta)^{-1/2}\|\phi\|^{1/2},
\]
and
\[
\lim_{i \to \infty} \left(\left\| x_i \otimes z \right\| + \left\| z \otimes x_i \right\| + \left\| y_j \otimes z \right\| + \left\| z \otimes y_j \right\| \right) = 0, \quad z \in \mathcal{H}.
\]

It was seen in [1] that this theorem implies that \(\mathcal{M} \) has property \((A_n) \) for each \(n \); we recall that property \((A_n) \) requires the solvability for \(x_i \) and \(y_j \) of arbitrary systems of the form \([x_i \otimes y_j] = \phi_{ij}, \phi_{ij} \in \mathcal{M}_*, 1 \leq i, j \leq n \). In order to prove the stronger property \((A_n) \) we need the following lemma, whose proof is reminiscent of the techniques of Robel [9].

Lemma 10. Suppose \(\mathcal{M} \subset \mathcal{L}(\mathcal{H}) \) is a linear subspace with property \(X_{\theta, \gamma} \) for some \(\gamma > \theta > 0 \). If \(n \) is a natural number, \(a > 0, \epsilon > 0 \), and \(\phi_{ij} \in \mathcal{M}_*, x_i, y_j \in \mathcal{H}, 1 \leq i, j \leq n \), are such that
\[
\left\| \phi_{ij} - [x_i \otimes y_j] \right\| < a, \quad 1 \leq i, j \leq n,
\]
then there exist \(\{x'_i, y'_j; 1 \leq i, j \leq n\} \) in \(\mathcal{H} \) such that
\[
\left\| \phi_{ij} - [x'_i \otimes y'_j] \right\| < \epsilon, \quad 1 \leq i, j \leq n,
\]
and
\[
\left\| x_i - x'_i \right\| < n(\gamma - \theta)^{-1/2} a^{1/2}, \quad \left\| y_j - y'_j \right\| < n(\gamma - \theta)^{-1/2} a^{1/2}, \quad 1 \leq i, j \leq n.
\]

Proof. Let \(\delta > 0 \) be such that \((n^2 + 2n - 1)\delta < \epsilon\). An application of Theorem 9 to \(\phi = \phi_{ij} - [x_i \otimes y_j] \) yields sequences \(\{\xi_{ij}(k)\}_{k=1}^{\infty}, \{\eta_{ij}(k)\}_{k=1}^{\infty} \) such that
\[
\phi_{ij} - [x_i \otimes y_j] = \left[\xi_{ij}(k) \otimes \eta_{ij}(k) \right], \quad 1 \leq k < \infty,
\]
\[
\left\| \xi_{ij}(k) \right\| < (\gamma - \theta)^{-1/2} a^{1/2}, \quad \left\| \eta_{ij}(k) \right\| < (\gamma - \theta)^{-1/2} a^{1/2}, \quad 1 \leq k < \infty,
\]
and
\[
\lim_{k \to \infty} \left(\left\| \xi_{ij}(k) \otimes z \right\| + \left\| z \otimes \eta_{ij}(k) \right\| \right) = 0, \quad z \in \mathcal{H}.
\]
An easy induction using (8) shows that we can find natural numbers \(k_{ij}, 1 \leq i, j \leq n \), such that the vectors \(\xi_{ij} = \xi_{ij}(k_{ij}) \) and \(\eta_{ij} = \eta_{ij}(k_{ij}) \) satisfy the inequalities
\[
\left\| [\xi_{ij} \otimes \eta_{ij}] \right\| < \delta \quad \text{if } (i, j) \neq (k, l),
\]
\[
\left\| [x_i \otimes \eta_{ij}] \right\| < \delta, \quad 1 \leq i, k, l \leq n,
\]
\[
\left\| [\xi_{ij} \otimes y_k] \right\| < \delta, \quad 1 \leq i, j, k \leq n.
\]
We can now set
\[
x'_i = x_i + \sum_{k=1}^{n} \xi_{ik}, \quad y'_j = y_j + \sum_{l=1}^{n} \eta_{lj}
\]
and note that we obviously have from (7)
\[
\left\| x'_i - x_i \right\| \leq \sum_{k=1}^{n} \left\| \xi_{ik} \right\| < n(\gamma - \theta)^{-1/2} a^{1/2}, \quad 1 \leq i \leq n.
\]
and similarly
\[\|y'_j - y_j\| < n(\gamma - \theta)^{-1/2}a^{1/2}, \quad 1 \leq j \leq n. \]

Finally, we observe that
\[
\begin{align*}
\phi_{ij} - [x'_i \otimes y'_j] = & \phi_{ij} - [x_i \otimes y_j] - [\xi_{ij} \otimes \eta_{ij}] - \sum_{l=1}^{n} [x_i \otimes \eta_{lj}] \\
& - \sum_{k=1}^{n} [\xi_{ik} \otimes y_j] - \sum_{(l, k) \neq (i, j)} [\xi_{ik} \otimes \eta_{lj}]
\end{align*}
\]
and we obtain, using (6) and (9),
\[\|\phi_{ij} - [x'_i \otimes y'_j]\| \leq n\delta + n\delta + (n^2 - 1)\delta < \epsilon. \]

The lemma follows.

A routine argument shows now that Lemma 10 is self-improving to yield the following result.

Theorem 11. Suppose \(M \subset \mathcal{L}(H)\) is a linear subspace with property \(X_{\gamma, \theta}\) for some \(\gamma > \theta > 0\). If \(n\) is a natural number, \(a > 0\) and \(\phi_{ij} \in M, x_i, y_j \in H, 1 \leq i, j \leq n,\) are such that
\[\|x_i - x'_i\| < n(\gamma - \theta)^{-1/2}a^{1/2}, \quad \|y_j - y'_j\| < n(\gamma - \theta)^{-1/2}a^{1/2}, \quad 1 \leq i, j \leq n. \]

Proof. Choose a positive number \(b\) such that
\[\|\phi_{ij} - [x_i \otimes y_j]\| < b < a, \quad 1 \leq i, j \leq n, \]
and let \(\epsilon\) be a positive number to be specified later (\(\epsilon\) will only depend on \(a\) and \(b\)). By Lemma 10, we can find vectors \(\{x'_i, y'_j: 1 \leq i, j \leq n\}\) in \(H\) such that
\[\|x_i - x'_i\| < n(\gamma - \theta)^{-1/2}a^{1/2}, \quad \|y_j - y'_j\| < n(\gamma - \theta)^{-1/2}a^{1/2}, \quad 1 \leq i, j \leq n. \]

and
\[\|x'_i - x_i\| < n(\gamma - \theta)^{-1/2}b^{1/2}, \quad \|y'_j - y_j\| < n(\gamma - \theta)^{-1/2}b^{1/2}. \]

We can then use Lemma 10 to construct inductively sequences \(\{x^k_i\}_{k=2}^{\infty}, \{y^k_j\}_{k=2}^{\infty}, 1 \leq i, j \leq n,\) such that
\[\|\phi_{ij} - [x^k_i \otimes y^k_j]\| < \epsilon^k, \quad 1 \leq i, j \leq n, 2 \leq k < \infty, \]
and
\[\|x^k_{i+1} - x^k_i\| < n(\gamma - \theta)^{-1/2}\epsilon^{k/2}, \quad \|y^k_{j+1} - y^k_j\| < n(\gamma - \theta)^{-1/2}\epsilon^{k/2}, \quad 1 \leq i, j \leq n, 1 \leq k < \infty. \]
It is obvious that the sequences \(\{ x^k_i \}_{k=1}^{\infty} \) and \(\{ y^k_j \}_{k=1}^{\infty} \), \(1 \leq i, j \leq n \), are Cauchy and
\[x^*_i = \lim_{k \to \infty} x^k_i, \quad y^*_j = \lim_{k \to \infty} y^k_j, \quad 1 \leq i, j \leq n. \]

Finally,
\[
\| x^*_i - x_i \| \leq \| x^*_i - x_j \| + \sum_{k=1}^{\infty} \| x^{k+1}_i - x^*_i \| < n(\gamma - \theta)^{-1/2} \left(b^{1/2} + \sum_{k=1}^{\infty} \epsilon_k^{1/2} \right)
\]
\[= n(\gamma - \theta)^{-1/2} \left(b^{1/2} + \epsilon_1^{1/2} (1 - \epsilon_1^{1/2})^{-1} \right), \quad 1 \leq i \leq n, \]
and analogously
\[
\| y^*_j - y_j \| < n(\gamma - \theta)^{-1/2} \left(b^{1/2} + \epsilon_1^{1/2} (1 - \epsilon_1^{1/2})^{-1} \right), \quad 1 \leq j \leq n.
\]

It suffices therefore to choose \(\epsilon \) so small that \(b^{1/2} + \epsilon_1^{1/2} (1 - \epsilon_1^{1/2})^{-1} < a^{1/2} \). The theorem is proved.

We are now able to prove the promised criterion.

Corollary 12. Suppose \(\mathcal{M} \subset \mathcal{L}(\mathcal{H}) \) is a linear subspace with property \(x_{\theta, \gamma} \) for some \(\gamma > \theta > 0 \). Then \(\mathcal{M} \) has property (\(A_n^+ \)) for every natural number \(n \). In particular the ultraweak closure \(\mathcal{M}^- \) of \(\mathcal{M} \) is weakly closed and reflexive.

Proof. The last part of the statement follows from the first part, combined with Lemma 3 and Corollary 4. To prove the first part we only have to use Theorem 11. Observe that we can take \(\delta(\epsilon, n) = \epsilon^2 n^{-2}(\gamma - \theta) \).

We finally note that one could give a definition analogous to Definition 8, in which the space \(\mathcal{M}_* \) is replaced by the set \(\mathcal{M}_- \) of all weakly continuous functionals on \(\mathcal{M} \). The property thus defined would however be stronger than \(X_{\theta, \gamma} \) since \(\mathcal{M}_* \) coincides with the norm closure of \(\mathcal{M}_- \); this is why we restricted ourselves to the space \(\mathcal{M}_* \) and the properties (\(A_n^+ \)). We do not know whether the weaker properties (\(A_n^- \)) imply reflexivity. Property (\(A_1^- \)) alone does not imply reflexivity. Indeed, the algebra \(\mathcal{M} \) of 2 \(\times \) 2 matrices defined as
\[
\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a, b \in \mathbb{C} \right\}
\]
is not reflexive, but it has property (\(A_1^- \)) (and even (\(A_1^\infty \)), as can be seen by an easy computation).

References

4. H. Bercovici, C. Foias and C. Pearcy, *Factoring trace-class operator-valued functions with applications to the class \(A_{\mathcal{H}_0} \)*. J. Operator Theory (to appear).

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Current address: Mathematical Sciences Research Center, 2223 Fulton Street, Berkeley, California 94720