BEST APPROXIMATION AND QUASITRIANGULAR ALGEBRAS

BY

TIMOTHY G. FEEMAN

ABSTRACT. If \mathcal{P} is a linearly ordered set of projections on a Hilbert space and \mathcal{X} is the ideal of compact operators, then $\text{Alg } \mathcal{P} + \mathcal{X}$ is the quasitriangular algebra associated with \mathcal{P}. We study the problem of finding best approximants in a given quasitriangular algebra to a given operator: given T and \mathcal{P}, is there an A in $\text{Alg } \mathcal{P} + \mathcal{X}$ such that $\|T - A\| = \inf\{\|T - S\| : S \in \text{Alg } \mathcal{P} + \mathcal{X}\}$? We prove that if \mathcal{A} is an operator subalgebra which is closed in the weak operator topology and satisfies a certain condition Δ, then every operator T has a best approximant in $\mathcal{A} + \mathcal{X}$. We also show that if \mathcal{P} is an increasing sequence of finite rank projections converging strongly to the identity then $\text{Alg } \mathcal{P}$ satisfies the condition Δ. Also, we show that if T is not in $\text{Alg } \mathcal{P} + \mathcal{X}$ then the best approximants in $\text{Alg } \mathcal{P} + \mathcal{X}$ to T are never unique.

1. Introduction. The concept of quasitriangular operators on a Hilbert space was introduced by Halmos in [5], where an operator T is said to be quasitriangular if there is a sequence $\{E_n\}$ of finite rank projections strongly converging to the identity such that $\|(1 - E_n)TE_n\| \to 0$.

For a fixed increasing sequence $\{P_n\}$ of finite rank projections strongly converging to the identity, Arveson [2] defined the quasitriangular algebra $QT(\{P_n\})$ to be the set of all operators T for which $\|(1 - P_n)TP_n\| \to 0$. He proved a distance formula for $QT(\{P_n\})$ and showed that $QT(\{P_n\}) = \text{Alg } \{P_n\} + \mathcal{X}$, where $\text{Alg } \{P_n\} = \{T : (1 - P_n)TP_n = 0 \text{ for all } n\}$ is the triangular algebra associated with $\{P_n\}$ and \mathcal{X} is the ideal of compact operators.

For any linearly ordered set \mathcal{P} of projections which is closed in the strong operator topology and contains 0 and 1, Fall, Arveson, and Muhly [4] showed that the algebra $\text{Alg } \mathcal{P} + \mathcal{X}$ is norm closed, where $\text{Alg } \mathcal{P}$ is the triangular algebra associated with \mathcal{P}, namely $\text{Alg } \mathcal{P} = \{T : (1 - P)TP = 0, \text{ all } P \in \mathcal{P}\}$. They also gave a characterization of $\text{Alg } \mathcal{P} + \mathcal{X}$ as a generalized quasitriangular algebra.

In this paper we study the problem of finding best quasitriangular approximants to a given operator: given an operator T does there exist an operator A in $\text{Alg } \mathcal{P} + \mathcal{X}$ for which $\|T - A\| = \inf\{\|T - S\| : S \in \text{Alg } \mathcal{P} + \mathcal{X}\}$? We prove that if \mathcal{A} is an operator subalgebra which is closed in the weak operator topology and satisfies a certain condition $\Delta(\mathcal{A})$, then every operator T has a best approximant in $\mathcal{A} + \mathcal{X}$.
We also show that if \(\{P_n\} \) is an increasing sequence of finite rank projections strongly converging to 1, then \(\text{Alg}(\{P_n\}) \) satisfies the condition \(\Delta(\text{Alg}(\{P_n\})) \). Hence, best approximants in \(\text{Alg}(\{P_n\}) + \mathcal{K} \) exist for every operator \(T \). Moreover, we show that if \(T \not\in \text{Alg}(\{P_n\}) + \mathcal{K} \), then such best approximants are never unique.

Some of our results are reminiscent of those proved in [3] by Axler, Berg, Jewell, and Shields, where it is shown, for example, that every \(L^\infty \) function on the unit circle has a best approximant in the algebra \(H^\infty + C \). In fact, the general approach to proving our main result is inspired by that paper.

2. Preliminaries. In what follows, \(H \) will be a separable infinite-dimensional Hilbert space with \(\mathcal{L}(H) \) denoting the algebra of all bounded linear operators on \(H \) and \(\mathcal{K}(H) \), or simply \(\mathcal{K} \), denoting the ideal of compact operators in \(\mathcal{L}(H) \). All subspaces of \(H \) are assumed to be closed and all projections are selfadjoint. For a projection \(P \) let \(P^\perp = 1 - P \).

If \(\mathcal{P} \) is any subset of \(\mathcal{L}(H) \) and \(T \in \mathcal{L}(H) \), then the distance of \(T \) from \(\mathcal{P} \) is given by \(d(T, \mathcal{P}) = \inf\{\|T - S\|: S \in \mathcal{P}\} \). Also, Lat \(\mathcal{P} \) will denote the set of all projections \(P \) for which \(PSP = SP \) whenever \(S \in \mathcal{P} \). If \(\mathcal{P} \) is a set of projections in \(\mathcal{L}(H) \), then \(\text{Alg} \mathcal{P} \) denotes the set of all operators \(T \in \mathcal{L}(H) \) for which \(PTP = TP \) whenever \(P \in \mathcal{P} \). A subalgebra \(\mathcal{A} \subset \mathcal{L}(H) \) is said to be reflexive if \(\text{Alg} \text{Lat} \mathcal{A} = \mathcal{A} \).

A nest is a family of projections which is linearly ordered by range inclusion, contains 0 and 1, and is closed in the strong operator topology (SOT). A nest algebra is a subalgebra \(\mathcal{A} \) of \(\mathcal{L}(H) \) for which \(\mathcal{A} = \text{Alg} \mathcal{P} \) for some nest \(\mathcal{P} \). Equivalently, it is not hard to see that a nest algebra is a reflexive algebra \(\mathcal{A} \) such that \(\text{Lat} \mathcal{A} \) is linearly ordered (cf. [9]).

In [2] Arveson established the following distance formula for a nest algebra \(\mathcal{A} \).

\[
(2.1) \quad d(T, \mathcal{A}) = \sup\{\|P^\perp TP\|: P \in \text{Lat} \mathcal{A}\} \quad \text{for } T \in \mathcal{L}(H).
\]

For a nest \(\mathcal{P} \) define the quasitriangular algebra associated with \(\mathcal{P} \) by \(\text{QT}(\mathcal{P}) = \text{Alg} \mathcal{P} + \mathcal{K}(H) \). In [4] Fall, Arveson, and Muhly showed that \(\text{QT}(\mathcal{P}) \) is a norm closed algebra and that

\[
\text{QT}(\mathcal{P}) = \{T \in \mathcal{L}(H): (i) \quad P^\perp TP \in \mathcal{K}(H), \text{ for all } P \in \mathcal{P},
\text{the map } P \mapsto P^\perp TP \text{ is continuous}
(ii) \text{with respect to the SOT on } \mathcal{P} \text{ and the norm topology on } \mathcal{K}(H)\}.
\]

In the case when \(\mathcal{P} = \{P_n\} \) is an increasing sequence of finite rank projections converging strongly to 1, this yields the definition of \(\text{QT}(\{P_n\}) \) given by Arveson in [2]. For this special case Arveson has established the following distance formula.

\[
(2.2) \quad d(T, \text{QT}(\{P_n\})) = \lim_{n \to \infty} \|P_n^\perp TP_n\|, \quad n \to \infty, \quad \text{for } T \in \mathcal{L}(H).
\]

In this case (2.1) can be written as

\[
(2.1') \quad d(T, \text{Alg}(\{P_n\})) = \sup\{\|P_n^\perp TP_n\|: \text{all } n\} \quad \text{for } T \in \mathcal{L}(H).
\]

We also need the following known result.
Lemma 2.3. If $\mathcal{A} \subset \mathcal{L}(H)$ is closed in the weak operator topology (WOT), then every T in $\mathcal{L}(H)$ has a best approximant in \mathcal{A}.

Proof. The proof is a standard argument using the compactness, in the weak operator topology, of the closed unit ball in $\mathcal{L}(H)$. □

Finally, we observe that if \mathcal{P} is a nest then $\text{Alg} \mathcal{P}$ is closed in the WOT. Indeed, if $\{A_\lambda\} \subset \text{Alg} \mathcal{P}$ is a net of operators such that $A_\lambda \to A$ (WOT), then, for each $P \in \mathcal{P}$, $0 = P^\perp A_\lambda P \to P^\perp AP$ (WOT), which implies that $A \in \text{Alg} \mathcal{P}$.

3. Main results.

Definition 3.1. A subalgebra \mathcal{A} of $\mathcal{L}(H)$ satisfies condition $\Delta(\mathcal{A})$ provided that, for each $T \in \mathcal{L}(H)$, for each sequence of operators $\{A_n\} \subset \mathcal{L}(H)$ satisfying $A_n \to 0$ (SOT), and for each $\epsilon > 0$, there exists an N such that

$$d(T + A_N, \mathcal{A}) \leq \epsilon + \max\{d(T, \mathcal{A}), d(T, \mathcal{A} + \mathcal{K}) + d(A_N, \mathcal{A})\}.$$

Two remarks are in order. First, if condition $\Delta(\mathcal{A})$ holds and T, $\{A_n\}$, and ϵ are chosen as indicated, then there exists an N such that

$$d(T + \beta A_N, \mathcal{A}) \leq \epsilon + \max\{d(T, \mathcal{A}), d(T, \mathcal{A} + \mathcal{K}) + d(\beta A_N, \mathcal{A})\}$$

for all $\beta \in [0,1]$. Otherwise, for each n, take $\beta_n \in [0,1]$ such that the inequality fails for $\beta_n A_n$. The sequence $\{\beta_n A_n\}$ satisfies $\beta_n A_n \to 0$ (SOT), so the assumption that condition $\Delta(\mathcal{A})$ holds yields a contradiction. Secondly, for any fixed M, N can be chosen so that $N > M$ by restricting attention to the sequence $\{A_n\}_{n \geq M}$.

The next result enables us to reduce the problem of finding best approximants in $\mathcal{A} + \mathcal{K}(H)$ to that of finding best approximants in \mathcal{A}.

Theorem 3.2. Let $\mathcal{A} \subset \mathcal{L}(H)$ be a subalgebra satisfying condition $\Delta(\mathcal{A})$. Choose $T \in \mathcal{L}(H) \setminus \mathcal{A} + \mathcal{K}$ and suppose the sequence $\{T_n\} \subset \mathcal{A} + \mathcal{K}$ satisfies $T_n \to T$ (SOT). Then there is a sequence $\{a_n\}$ of nonnegative real numbers satisfying $\sum a_n = 1$ and such that, if $K = \sum a_n T_n$, then $d(T - K, \mathcal{A}) = d(T, \mathcal{A} + \mathcal{K})$.

Proof. Let $A_n = T - T_n$ so that $A_n \to 0$ (SOT). For convenience let

$$r = d(T, \mathcal{A} + \mathcal{K}).$$

Claim. There exists an increasing sequence of positive integers $\{n(k)\}$ and a sequence $\{a_k\}$ of positive real numbers such that $\sum a_k = 1$ and such that, for all $N = 1, 2, \ldots,$

$$d\left(\sum_{k=1}^N a_k A_{n(k)}, \mathcal{A}\right) = r - \epsilon_N, \quad \text{where } \epsilon_N = r/3^N.$$

Proof of Claim. Choose $n(1) = 1$. Since $A_1 \notin \mathcal{A} + \mathcal{K}$, it follows that $d(A_1, \mathcal{A}) \neq 0$. Choose a_1 such that $a_1 \cdot d(A_1, \mathcal{A}) = r - \epsilon_1$. Since $a_1 \cdot d(A_1, \mathcal{A}) = d(a_1 A_1, \mathcal{A})$, it follows that $d(a_1 A_1, \mathcal{A}) = r - \epsilon_1$. The relations

$$d\left(A_1, \mathcal{A}\right) = d(T, \mathcal{A} + T_1) \geq d(T, \mathcal{A} + \mathcal{K})$$

imply $0 < a_1 < 1$.

Suppose $n(1), \ldots, n(N)$ and a_1, \ldots, a_N have been chosen as required. Applying condition $\Delta(\mathcal{A})$ to the operator $\sum_{k=1}^N a_k A_{n(k)}$, the sequence $\{A_n\}$, and ϵ_{N+1}, choose.
n(N + 1) > n(N) such that

\[d \left(\sum_{k=1}^{N} \alpha_k A_n(k) + \beta A_{n(N+1)}, \mathcal{A} \right) \]

\[\leq \varepsilon_{N+1} + \max \left(d \left(\sum_{k=1}^{N} \alpha_k A_n(k), \mathcal{A} \right), d \left(\sum_{k=1}^{N} \alpha_k A_n(k), \mathcal{A} + \mathcal{K} \right) \right) \]

\[+ d \left(\beta A_{n(N+1)}, \mathcal{A} \right) \]

for all \(\beta \in [0, 1] \).

Consider the quantity \(d(\sum_{k=1}^{N} \alpha_k A_n(k) + \alpha A_{n(N+1)}, \mathcal{A}) \) as a function of \(\alpha \). When \(\alpha = 0 \) this quantity equals \(r - \varepsilon_N \). Note that \(r - \varepsilon_N < r - \varepsilon_{N+1} \). As \(\alpha \to \infty \) this quantity also approaches \(\infty \). (Here we use the fact that \(A_k \) does not belong to \(\mathcal{A} \) for any \(k \).) Thus, there exists some value of \(\alpha \), call it \(\alpha_{N+1} \), for which

\[d \left(\sum_{k=1}^{N} \alpha_k A_n(k) + \alpha_{N+1} \cdot A_{n(N+1)}, \mathcal{A} \right) = r - \varepsilon_{N+1}. \]

Note that

\[r - \varepsilon_{N+1} = d \left(\sum_{k=1}^{N+1} \alpha_k A_n(k), \mathcal{A} \right) = d \left(\sum_{k=1}^{N+1} \alpha_k (T - T_n(k)), \mathcal{A} \right) \]

\[\geq d \left(\sum_{k=1}^{N+1} \alpha_k T, \mathcal{A} + \mathcal{K} \right) \quad \text{since } T_n(k) \in \mathcal{A} + \mathcal{K} \]

\[= \left(\sum_{k=1}^{N+1} \alpha_k \right) \cdot d(T, \mathcal{A} + \mathcal{K}) = \left(\sum_{k=1}^{N+1} \alpha_k \right) \cdot r \]

and, hence, \(\sum_{k=1}^{N+1} \alpha_k < 1 \). It remains to show that \(\sum_{k=1}^{N+1} \alpha_k = 1 \).

Referring to inequality (3.3), with \(\alpha_{N+1} \) in place of \(\beta \), suppose that

\[d \left(\sum_{k=1}^{N+1} \alpha_k A_n(k), \mathcal{A} \right) \leq \varepsilon_{N+1} + d \left(\sum_{k=1}^{N} \alpha_k A_n(k), \mathcal{A} \right). \]

Then \(r - \varepsilon_{N+1} \leq \varepsilon_{N+1} + (r - \varepsilon_N) \), which implies that \(\varepsilon_N \leq 2\varepsilon_{N+1} \), a contradiction of the definition of \(\{ \varepsilon_n \} \). It follows that

\[r - \varepsilon_{N+1} = d \left(\sum_{k=1}^{N+1} \alpha_k A_n(k), \mathcal{A} \right) \]

\[\leq \varepsilon_{N+1} + d \left(\sum_{k=1}^{N} \alpha_k A_n(k), \mathcal{A} + \mathcal{K} \right) + d(\alpha_{N+1} A_{n(N+1)}, \mathcal{A}) \]

\[= \varepsilon_{N+1} + \left(\sum_{k=1}^{N} \alpha_k \right) \cdot r + \alpha_{N+1} \cdot d(A_{n(N+1)}, \mathcal{A}). \]

If \(N \to \infty \) then \(\varepsilon_{N+1} \to 0 \) and, since \(\sum \alpha_k \leq 1 \), it follows that \(\alpha_{N+1} \to 0 \). Since \(A_n \to 0 \) (SOT) we see that \(\{ \| A_n \| \} \), and hence \(\{ d(A_n, \mathcal{A}) \} \), is a bounded set. Thus,
letting $N \to \infty$ in the above yields $r = d(\sum \alpha_k A_{n(k)}, \mathcal{A}) \leq (\sum \alpha_k) \cdot r$, which implies that $\sum \alpha_k \geq 1$. This completes the proof of the claim.

To complete the proof of the theorem, define the sequence $\{a_n\}$ by $a_{n(k)} = \alpha_k$ and $a_j = 0$ if j is not of the form $n(k)$ for any k. Also, let $K = \sum a_n T_n = \sum \alpha_k T_{n(k)} = T - \sum \alpha_k A_{n(k)}$. This sum converges since $\sum \alpha_k = 1$ and since $\{|A_n|\}$ is a bounded set. It follows from the foregoing discussion that $d(T - K, \mathcal{A}_k) = d(\sum \alpha_k A_{n(k)}, \mathcal{A}) = r = d(T, \mathcal{A} + \mathcal{K})$, which completes the proof. □

Note that if $\mathcal{A} + \mathcal{K}(H)$ is norm closed then $K \in \mathcal{A} + \mathcal{K}(H)$. Also, if $\{T_n\}$ is taken to be a sequence of compact operators converging to T (SOT), then $K \in \mathcal{K}(H)$, since $\mathcal{K}(H)$ is norm closed.

We are now in a position to prove one of our main results on the existence of best approximants.

Theorem 3.4. Let $\mathcal{A} \subset \mathcal{L}(H)$ be a subalgebra which is WOT-closed and satisfies condition $\Delta(\mathcal{A})$, and suppose $T \in \mathcal{L}(H)$. Then there exists $B \in \mathcal{A} + \mathcal{K}(H)$ such that $\|T - B\| = d(T, \mathcal{A} + \mathcal{K}(H))$.

Proof. Assume $T \not\in \mathcal{A} + \mathcal{K}(H)$, since otherwise the result is obvious. Let $\{e_j: j \geq 0\}$ be an orthonormal basis for H and define E_n to be the projection onto the subspace spanned by $\{e_j: j \leq n\}$. Each E_n has finite rank and $E_n \to 1$ (SOT). Set $T_n = E_n T E_n$. Each T_n is compact and $T_n \to T$ (SOT).

By Theorem 3.2 there is a sequence $\{a_n\}$ of nonnegative real numbers satisfying $\sum a_n = 1$ and such that, if $K = \sum a_n T_n$, $d(T - K, \mathcal{A}) = d(T, \mathcal{A} + \mathcal{K})$. Note that $K \in \mathcal{K}$. By Lemma 2.3 there exists $A \in \mathcal{A}$ such that $\|(T - K) - A\| = d(T - K, \mathcal{A})$. Therefore, the operator $B = A + K$ is in $\mathcal{A} + \mathcal{K}$ and satisfies

$$\|T - B\| = d(T, \mathcal{A} + \mathcal{K}).$$

In other words, B is a best approximant to T in $\mathcal{A} + \mathcal{K}$. □

We remarked earlier that every nest algebra is WOT-closed, so Theorem 3.4 applies, in particular, to any nest algebra \mathcal{A} which satisfies condition $\Delta(\mathcal{A})$.

The following corollary shows that if $\mathcal{A} + \mathcal{K}$ is norm closed, then the operator K in the conclusion of Theorem 3.2 is not unique.

Corollary 3.5. Let \mathcal{A}, T, and $\{T_n\}$ be as in the statement of Theorem 3.2, and also suppose that $\mathcal{A} + \mathcal{K}$ is norm closed. Then there exist two sequences $\{a_n\}$ and $\{b_n\}$ of nonnegative real numbers satisfying $\sum a_n = \sum b_n = 1$ and such that, if $K = \sum a_n T_n$ and $K_1 = \sum b_n T_n$, then $K \neq K_1$ and $d(T - K, \mathcal{A}) = d(T, \mathcal{A} + \mathcal{K}) = d(T - K_1, \mathcal{A}) = d(T, \mathcal{A} + \mathcal{K})$.

Proof. Let $\{a_n\}$ and $K = \sum a_n T_n$ be as in the conclusion of Theorem 3.2. Then $(T_n - K) \to (T - K)$ (SOT). Let \mathcal{O} be a convex neighborhood of $T - K$ in the strong operator topology whose closure does not contain \mathcal{O}. Deleting a finite number of terms if necessary, assume that $T_n - K \in \mathcal{O}$ for all n.

Since $\mathcal{A} + \mathcal{K}$ is norm closed, we see that $K \in \mathcal{A} + \mathcal{K}$ and, hence, $(T_n - K) \in \mathcal{A} + \mathcal{K}$ for all n. Thus by Theorem 3.2 we can construct a sequence $\{b_n\}$ such that $\sum b_n = 1$ and such that if $K' = \sum b_n (T_n - K)$, then

$$d((T - K) - K', \mathcal{A}) = d(T - K, \mathcal{A} + \mathcal{K}) = d(T, \mathcal{A} + \mathcal{K}).$$
Thus, the operator \(K_1 = K + K' \) satisfies \(d(T - K_1, \mathcal{A}) = d(T, \mathcal{A} + \mathcal{N}) \). Since \(K' \) is a convex combination of elements of \(\emptyset \), it follows that \(K' \neq 0 \) and, hence, \(K_1 \neq K \). This proves the corollary. \(\square \)

We noted earlier that \(\mathcal{A} + \mathcal{N} \) is norm closed whenever \(\mathcal{A} \) is a nest algebra, so Corollary 3.5 applies, in particular, to any nest algebra satisfying condition \(\Delta (\mathcal{A}) \). Also note that if \(\{T_n\} \) is taken to be a sequence of compact operators, then \(K \) is compact as well and the requirement that \(\mathcal{A} + \mathcal{N} \) be norm closed is superfluous.

4. More main results. Throughout this section let \(\mathcal{P} = \{P_n\} \) be a fixed increasing sequence of finite rank projections such that \(P_n \to 1 \) (SOT). Let

\[
\mathcal{A} = \text{Alg}\{P_n\} = \{ T \in \mathcal{L}(H) : P_n T P_n = 0 \text{ for all } n \}
\]

and let

\[
QT = QT(\{P_n\}) = \{ T \in \mathcal{L}(H) : \|P_n T P_n\| \to 0, n \to \infty \}.
\]

The following result establishes the validity of condition \(\Delta (\mathcal{A}) \) in this special case. It then follows from Theorem 3.4 that best approximants in \(QT \) exist for every operator in \(\mathcal{L}(H) \).

Proposition 4.1. The algebra \(\mathcal{A} = \text{Alg}\{P_n\} \) satisfies condition \(\Delta (\mathcal{A}) \).

Proof. Choose \(T \in \mathcal{L}(H) \) and let \(\{A_n\} \subseteq \mathcal{L}(H) \) satisfy \(A_n \to 0 \) (SOT). Fix \(\varepsilon > 0 \). If condition \(\Delta (\mathcal{A}) \) is not satisfied, then by the distance formulas (2.2) and (2.1') there is a sequence \(\{m_n\} \) of nonnegative integers such that

\[
\|P_{m_n} (T + A_n) P_{m_n}\| > \varepsilon + \alpha_n,
\]

where

\[
\alpha_n = \max \left(\sup_{j \geq 0} \|P_j T P_{m_n}\|, \limsup_k \|P_k^+ T P_k\| + \sup_{j \geq 0} \|P_j^+ A_n P_j\| \right).
\]

Consider two cases.

Case 1. Suppose no nonnegative integer appears infinitely often in the sequence \(\{m_n\} \). Passing to a subsequence if necessary, assume that \(\{m_n\} \) is an increasing sequence. By the definition of \(\limsup \), there exists some \(N \) such that for \(n \geq N \), we have

\[
\|P_{m_n} (T + A_n) P_{m_n}\| \leq \|P_{m_n}^+ T P_{m_n}\| + \|P_{m_n} A_n P_{m_n}\| \leq \limsup_k \|P_k^+ T P_k\| + \varepsilon / 2 + \sup_j \|P_j^+ A_n P_j\| \leq \alpha_N + \varepsilon / 2.
\]

This contradicts the definition of the sequence \(\{m_n\} \).

Case 2. Suppose some nonnegative integer, call it \(M \), appears infinitely often in the sequence \(\{m_n\} \). Passing to a subsequence if necessary, assume that

\[
\|P_{m_n} (T + A_n) P_{m_n}\| > \varepsilon + \alpha_n \text{ for all } n.
\]

Since \(P_M \) is compact and \(A_n \to 0 \) (SOT), it follows that \(\|A_n P_M\| \to 0 \). Choose \(N \) such that \(\|A_N P_M\| < \varepsilon / 2 \). We then have

\[
\|P_M^+ (T + A_n) P_M\| \leq \|P_M^+ T P_M\| + \|P_M^+ A_n P_M\| \leq \sup_j \|P_j^+ T P_j\| + \varepsilon / 2 \leq \alpha_N + \varepsilon / 2.
\]
This yields a contradiction to the definition of the sequence \(\{ m_n \} \) and completes the proof of the proposition. \(\square \)

We now show that best approximants in \(QT \) are never unique for operators not in \(QT \).

Proposition 4.2. For each \(T \in \mathcal{L}(H) \setminus QT \) there exist operators \(B \) and \(B_1 \) in \(QT \) such that \(B \neq B_1 \) and \(\| T - B \| = \| T - B_1 \| = d(T, QT) \).

Proof. Consider two cases.

Case 1. Suppose there is a subsequence \(\{ n_k \} \) such that \((P_{n_k} - P_{n_k}) TP_{n_0} \neq 0 \) for all \(k \geq 0 \). Set \(E_k = P_{n_k} \) and let \(T_k = E_k TE_k \). Now, let \(K = \sum a_k T_k \) and \(K_1 = \sum b_k T_k \) be as in the conclusion of Corollary 3.5. Note that \(K \) and \(K_1 \) are compact. By Lemma 2.3 we can find operators \(A \) and \(A_1 \) in \(\mathcal{A} \) such that \(\| T - K - A \| = d(T - K, \mathcal{A}) \) and \(\| T - K_1 - A_1 \| = d(T - K_1, \mathcal{A}) \). Thus, \(B = A + K \) and \(B_1 = A_1 + K_1 \) are best approximants in \(QT \) to \(T \). To show that \(B \neq B_1 \), it suffices to show that \(K - K_1 \notin \mathcal{A} \).

Suppose, to the contrary, that \(K - K_1 \in \mathcal{A} \). Then it follows, in particular, that

\[
0 = E_0^* (K - K_1) E_0 = \sum_{k \geq 0} (a_k - b_k) E_0^* E_k TE_k E_0
\]

Letting \(C_k = \sum_{j > k} (a_j - b_j) \), a summation by parts shows that

\[
\sum_{k=1}^{N} C_k (E_k - E_{k-1}) TE_0 = \sum_{k=1}^{N-1} (a_k - b_k) E_k TE_0 + C_N E_N TE_0 - C_1 E_0 TE_0.
\]

As \(N \to \infty \), \(|C_N| \to 0 \), so \(||C_N E_N TE_0|| \to 0 \). Thus,

\[
\sum_{k=1}^{\infty} C_k (E_k - E_{k-1}) TE_0 = \sum_{k=1}^{\infty} (a_k - b_k) E_k TE_0 - C_1 E_0 TE_0.
\]

We thus have that

\[
\sum_{k=1}^{\infty} \left(\sum_{j > k} (a_j - b_j) \right) (E_k - E_{k-1}) TE_0 = \sum_{k=1}^{\infty} (a_k - b_k) E_k TE_0 - \sum_{k=1}^{\infty} (a_k - b_k) E_0 TE_0 = \sum_{k=1}^{\infty} (a_k - b_k) (E_k - E_0) TE_0 = 0.
\]

Since the range of \((E_l - E_{l-1}) \) is orthogonal to that of \((E_j - E_{j-1}) \) whenever \(l \neq j \), and since, by assumption, \((E_k - E_{k-1}) TE_0 \neq 0 \) for \(k \geq 1 \), it follows that

\[
\sum_{j > k} (a_j - b_j) = 0 \quad \text{for } k \geq 1.
\]

The fact that \(\sum a_n = \sum b_n = 1 \) implies that \(\sum_{j > 0} (a_j - b_j) = 0 \) as well. Hence, \(a_j = b_j \) for all \(j \geq 0 \), which contradicts the assumption that \(K \neq K_1 \). Thus, \(K - K_1 \notin \mathcal{A} \) and, consequently, \(B \neq B_1 \).
Case 2. Suppose there is no subsequence \(\{n_k\} \) for which \((P_{n_k} - P_{n})TP_{n_k} \neq 0 \) for all \(k \). Then for each \(k \) there is a smallest integer \(m(k) \) such that \(P_{m(k)}TP_k = 0 \). We claim that \(m(k) \geq k + 1 \) for infinitely many \(k \). Indeed, were this not so then there would exist \(N \) such that \(m(k) \leq k \) for \(k \geq N \). Hence, \(P_k^\perp TP_k = 0 \) for \(k \geq N \), which implies that \(d(T, QT) = 0 \), contradicting the assumption that \(T \notin QT \).

We make the following remarks.

(a) If \(m(k) \geq k + 1 \), then \((P_{m(k)} - P_k)TP_k \neq 0 \). This follows from the choice of \(m(k) \) as the smallest integer such that \(P_{m(k)}TP_k = 0 \).

(b) It is clear that if \((P_{m(k)} - P_k)TP_k \neq 0 \), then \((P_j - P_k)TP_k \neq 0 \) for \(j \geq m(k) \).

Now, choose \(k_0 \) such that \(m(k_0) \geq k_0 + 1 \) and \(TP_{k_0} \neq 0 \). For \(j \geq 1 \) inductively choose \(k_j \) such that \(m(k_j) \geq k_j + 1 \) and \(k_j > m(k_{j-1}) \). Set \(E_j = P_{k_j} \) and let \(T_j = E_jTE_j \). From this we get \(K = \sum a_nT_n \) and \(K_1 = \sum b_nT_n \), as in the conclusion of Corollary 3.5. To complete the proof it suffices, as in the previous case, to show that \(K - K_1 \notin \mathcal{A} \).

First observe that remarks (a) and (b) imply that \((E_n - E_j)TE_j \neq 0 \) for \(n \geq l + 1 \). Also, by the construction of the sequence \(\{E_n\} \), it follows that \((E_{j+1} - E_j)TE_j = 0 \) for \(j \geq l + 1 \). Putting these together we see that, for \(n \geq l + 1 \),

\[
(E_n - E_j)TE_j = \sum_{j=l}^{n-1} (E_{j+1} - E_j)TE_j = (E_{l+1} - E_j)TE_j \neq 0.
\]

To see that \(K - K_1 \notin \mathcal{A} \), suppose the contrary. Then, for \(l \geq 0 \), we must have

\[
0 = E_l^\perp (K - K_1)E_l = \sum_{n \geq l+1} (a_n - b_n)E_l^\perp E_nTE_nE_l
\]

\[
= \sum_{n \geq l+1} (a_n - b_n)(E_n - E_l)TE_l
\]

\[
= \sum_{n \geq l+1} (a_n - b_n)(E_{l+1} - E_l)TE_l
\]

\[
= \left[\sum_{n \geq l+1} (a_n - b_n) \right] (E_{l+1} - E_l)TE_l.
\]

Since \((E_{l+1} - E_l)TE_l \neq 0 \), it follows that \(\sum_{n \geq l+1} (a_n - b_n) = 0 \) for \(l \geq 0 \). Since \(\sum a_n = \sum b_n = 1 \), it follows that \(\sum_{n \geq l} (a_n - b_n) = 0 \) for all \(l \geq 0 \) and, hence, \(a_n = b_n \) for all \(n \), contradicting the assumption that \(K \neq K_1 \). Hence, \(K - K_1 \notin \mathcal{A} \) and the corollary is proved.

5. Remarks. The obvious question is to ask which subalgebras \(\mathcal{A} \) satisfy the condition \(\Delta(\mathcal{A}) \). Our proof of Proposition 4.1 and Arveson's proof of the distance formula (2.2) both use the finite dimensionality of the projections \(P_n \) in an important way. Some means of eliminating this dependence would apparently be needed to establish a broader validity of condition \(\Delta(\mathcal{A}) \). A generalization of Proposition 4.2 to the setting of §3 would also be useful.

A question related to Theorem 3.2 is the following. If the operators \(\{T_n\} \) are taken to be compact, then the resulting \(K \) is also compact. It is possible that this \(K \) is a best compact approximant to \(T \)?
In [3] Axler, Berg, Jewell, and Shields employ what they call the “Basic Inequality” for a Banach space X. This inequality is similar to condition $\Delta(\mathcal{A})$ for $\mathcal{A} = \{0\}$, the zero operator. They show that the Basic Inequality is satisfied for $X = l^p$, $1 < p < \infty$. They also prove that the closed unit ball of $L^\infty / H^\infty + C$ has no extreme points.

Two questions which arise are whether $\Delta(\mathcal{A})$ holds when \mathcal{A} is the algebra of operators on l^p ($1 < p < \infty$) with upper triangular matrix representations with respect to the standard basis, and whether the closed unit ball of $\mathcal{L}(H) / \mathcal{A} + \mathcal{K}(H)$ has any extreme points if \mathcal{A} is a nest algebra satisfying condition $\Delta(\mathcal{A})$.

Another line of questioning is related to the theory of M-ideals, introduced in 1972 by Alfsen and Effros [1]. Luecking [8] showed that $H^\infty + C / H^\infty$ is an M-ideal in L^∞ / H^∞, and it seems reasonable to ask if $\mathcal{A} + \mathcal{K}(H) / \mathcal{A}$ is an M-ideal in $\mathcal{L}(H) / \mathcal{A}$ for any nest algebra \mathcal{A}. An affirmative answer would imply, by a result of Holmes, Scranton, and Ward [7], that the collection $\mathcal{P}_T = \{A + \mathcal{A} \in \mathcal{A} + \mathcal{K}(H) / \mathcal{A} : d(T - A, \mathcal{A}) = d(T, \mathcal{A} + \mathcal{K}(H))\}$ would algebraically span $\mathcal{A} + \mathcal{K}(H) / \mathcal{A}$ for each $T \in \mathcal{L}(H) \setminus \mathcal{A} + \mathcal{K}(H)$.

References

Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use