Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On infinite deficiency in $ {\bf R}\sp \infty$-manifolds


Author: Vo Thanh Liem
Journal: Trans. Amer. Math. Soc. 288 (1985), 205-226
MSC: Primary 57N20; Secondary 57N35, 58B05
DOI: https://doi.org/10.1090/S0002-9947-1985-0773057-2
MathSciNet review: 773057
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the notion of inductive proper $ q - 1 - {\text{LCC}}$ introduced in this note, we will prove the following theorems.

Theorem 1. Let $ M$ be an $ {R^\infty }$-manifold and let $ H:X \times I \to M$ be a homotopy such that $ {H_0}$ and $ {H_1}$ are $ {R^\infty }$-deficient embeddings. Then, there is a homeomorphism $ F$ of $ M$ such that $ F \circ {H_0} = {H_1}$. Moreover, if $ H$ is limited by an open cover $ \alpha $ of $ M$ and is stationary on a closed subset $ {X_0}$ of $ X$ and $ {W_0}$ is an open neighborhood of

$\displaystyle H[(X - {X_0}) \times I] \quad {in\;M,} $

then we can choose $ F$ to also be $ \operatorname{St}^4(\alpha )$-close to the identity and to be the identity on $ \dot X_{0} \cup (M - {W_0})$.

Theorem 2. Every closed, locally $ {R^\infty }({Q^\infty })$-deficient subset of an $ {R^\infty }({Q^\infty })$-manifold $ M$ is $ {R^\infty }({Q^\infty })$-deficient in $ M$. Consequently, every closed, locally compact subset of $ M$ is $ {R^\infty }({Q^\infty })$-deficient in $ M$.


References [Enhancements On Off] (What's this?)

  • [Br] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [B] J. L. Bryant, On embeddings of compacta in Euclidean spaces, Proc. Amer. Math. Soc. 23 (1969), 46-51. MR 0244973 (39:6286)
  • [Ch] T. A. Chapman, Lectures on Hilbert cube manifolds, CBMS Regional Conf. Ser. in Math., No. 28, Amer. Math. Soc., Providence, R. I., 1976. MR 0423357 (54:11336)
  • [D] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1973. MR 0478089 (57:17581)
  • [F] S. Ferry, The homeomorphism group of compact Hilbert-cube manifolds is an $ ANR$, Ann. of Math. (2) 106 (1977), 101-119. MR 0461536 (57:1521)
  • [H $ _{\mathbf{1}}$] R. E. Heisey, Manifolds modelled on $ {R^\infty }$ or bounded weak-$ ^{\ast}$topologies, Trans. Amer. Math. Soc. 206 (1975), 295-312. MR 0397768 (53:1626)
  • [H $ _{\mathbf{2}}$] -, Stability, classification and open embeddings of $ {R^\infty }$-manifolds, preprint.
  • [H $ _{\mathbf{3}}$] -, Manifolds modelled on the direct limit of Hilbert cubes, Geometric Topology (J. Cantrell, ed.), Academic Press, New York, 1977.
  • [H $ _{\mathbf{4}}$] -, Contracting spaces of maps, Trans. Amer. Math. Soc. 193 (1974), 389-411. MR 0367908 (51:4150)
  • [H $ _{\mathbf{5}}$] -, Manifolds modelled on the direct limit of lines, Pacific J. Math 102 (1982), 47-54. MR 682043 (84d:57009)
  • [H-T] R. E. Heisey and H. Torunčyk, On the topology of directlimits of $ ANR$'s, Pacific J. Math 93 (1981), 307-312. MR 623566 (82k:57010)
  • [H-W] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N. J., 1948. MR 0006493 (3:312b)
  • [Hu] S. T. Hu, Homotopy theory, Academic Press, New York, 1959. MR 0106454 (21:5186)
  • [Hd] J. F. P. Hudson, Piecewise linear topology, Math. Lecture Note Ser., Benjamin, New York, 1969. MR 0248844 (40:2094)
  • [L $ _{\mathbf{1}}$] V. T. Liem, An $ \alpha $-approximation theorem for $ {R^\infty }$-manifolds, Rocky Mountain J. Math, (to appear). MR 892466 (88g:57017)
  • [L $ _{\mathbf{2}}$] -, An unknotting theorem in $ {Q^\infty }$-manifolds, Proc. Amer. Math. Soc. 82 (1981), 125-132. MR 603615 (82j:57012)
  • [L $ _{\mathbf{3}}$] -, An $ \alpha $-approximation for $ {Q^\infty }$-manifolds, Topology Appl. 12 (1981), 289-304. MR 623737 (82k:57011)
  • [M-S] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Stud., Princeton Univ. Press, Princeton, N. J., 1974. MR 0440554 (55:13428)
  • [R] T. B. Rushing, Topological embedding, Academic Press, New York, 1973. MR 0348752 (50:1247)
  • [Sp] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N20, 57N35, 58B05

Retrieve articles in all journals with MSC: 57N20, 57N35, 58B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0773057-2
Keywords: Isotopy, collar, bicollar, $ \alpha $-limited, direct limit space, $ 1{\text{-LCC}}$ embedding, unknotting theorem
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society