Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences


Authors: A. Bellow and V. Losert
Journal: Trans. Amer. Math. Soc. 288 (1985), 307-345
MSC: Primary 28D05
DOI: https://doi.org/10.1090/S0002-9947-1985-0773063-8
MathSciNet review: 773063
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper on the weighted pointwise ergodic theorem we bring together a substantial amount of previous work by a number of mathematicians and integrate it into a systematic consistent scheme; we also bring some original contributions to the subject which extend its boundaries and suggest further avenues of research. The paper is divided into six sections. The most significant new results are contained in $ \S\S5$ and $ 6$.


References [Enhancements On Off] (What's this?)

  • [1] H. Anzai and S. Kakutani, Bohr compactifications of a locally compact abelian group. I, II, Proc. Imp. Acad. (Tokyo) 19 (1943), 476-480, 533-539. MR 0015122 (7:374e)
  • [2] J. R. Baxter and J. H. Olsen, Weighted and subsequential ergodic theorems, Canad. J. Math. 35 (1983), 145-166. MR 685822 (84g:47005)
  • [3] A. Bellow, Sur la structure des suites "mauvaises universelles" en théorie ergodique, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 55-58. MR 651075 (84f:28012)
  • [4] -, On "bad universal" sequences in ergodic theory (II), Proc. Univ. Sherbrooke Workshop on Measure Theory and Appl. (June 1982), Lecture Notes in Math., vol. 1033, Springer-Verlag, Berlin and New York, 1983. MR 729527 (85m:28015)
  • [5] A. Bellow and V. Losert, On sequences of density zero in ergodic theory, Proc. Conf. on Modern Analysis and Probability Honoring Prof. Shizuo Kakutani, Contemporary Math. Ser., vol. 26, Amer. Math. Soc., Providence, R.I., 1984, pp. 49-60. MR 737387 (86c:28034)
  • [6] J. P. Bertrandias, Suites pseudo-aléatoires et critères d'équirépartition module $ 1$, Compositio Math. (Groningen) 16 (1964), 23-28. MR 0170880 (30:1115)
  • [7] -, Espaces des fonctions bornées et continues en moyenne asymptotique d'ordre $ p$, Bull. Soc. Math. France 5 (1966), 1-106.
  • [8] A. S. Besicovitch, Almost periodic functions, 2nd ed., Dover, New York, 1954. MR 0068029 (16:817a)
  • [9] J. R. Blum and R. Cogburn, on ergodic sequences of measures, Proc. Amer. Math. Soc. 51 (1975), 359-365. MR 0372529 (51:8736)
  • [10] J. R. Blum and J. I. Reich, The Individual Ergodic Theorem for $ p$-sequences, Israel J. Math. 27 (1977), 180-184. MR 0442192 (56:578)
  • [11] -, Strongly ergodic sequences of integers and the Individual Ergodic Theorem, Proc. Amer. Math. Soc. 86 (1982), 591-595. MR 674086 (84d:28020)
  • [12] H. Bohr, Almost periodic functions, Chelsea, New York, 1947. MR 0020163 (8:512a)
  • [13] A. Brunel and M. Keane, Ergodic theorems for operator sequences, Z. Wahrsch. Verw. Gebiete 12 (1969), 231-240. MR 0268934 (42:3831)
  • [14] J. P. Conze, Convergence des moyennes ergodiques pour des sous-suites, Bull. Soc. Math. France 35 (1973), 7-15. MR 0453975 (56:12226)
  • [15] J. Coquet, T. Kamae and M. Mendès France, Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France 105 (1977), 369-384. MR 0472749 (57:12439)
  • [16] C. Corduneanu, Almost periodic functions, Wiley-Interscience, New York, 1968. MR 0481915 (58:2006)
  • [17] N. Dunford and J. T. Schwartz, Linear operators. I, Wiley, New York, 1958.
  • [18] W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217-240. MR 0036455 (12:112a)
  • [19] -, The point spectrum of weakly almost periodic functions, Michigan J. Math. 3 (1956), 137-139. MR 0082627 (18:583b)
  • [20 E] Følner, On the dual spaces of the Besicovitch almost periodic spaces, Mat.-Fys. Medd. Danske Vid. Selsk. 29 (1954). MR 0065813 (16:490b)
  • [21] M. Fréchet, Les fonctions asymptotiquement presque périodiques continues, C. R. Acad. Sci. Paris Sér. I Math. 213 (1941), 520-522. MR 0009062 (5:96b)
  • [22] -, Les fonctions asymptotiquement presque-périodiques, Rev. Sci. 79 (1941), 341-354. MR 0013242 (7:127e)
  • [23] H. Furstenberg, Poincaré recurrence and number theory, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 211-234. MR 628658 (83d:10067)
  • [24] I. Glicksberg and K. de Leeuw, Almost periodic functions on semigroups, Acta Math. 105 (1961), 99-140. MR 0131785 (24:A1633)
  • [25] C. C. Graham and O. C. McGehee, Essays in commutative harmonic analysis, Grundlehren Math. Wiss., Springer-Verlag, Berlin and New York, Vol. 238, 1979. MR 550606 (81d:43001)
  • [26] M. de Guzmán, Real variable methods in Fourier analysis, North-Holland Math. Stud., Vol. 46, Amsterdam, New York, 1981. MR 596037 (83j:42019)
  • [27] P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. II, Ann. of Math. (2) 43 (1942), 332-350. MR 0006617 (4:14e)
  • [28] A. Ionescu Tulcea and C. Ionescu Tulcea, Abstract ergodic theorems, Trans. Amer. Math. Soc. 107 (1963), 107-124. MR 0150611 (27:606)
  • [29] U. Krengel, On the Individual Ergodic Theorem for subsequences, Ann. Math. Statist. 42 (1971), 1091-1095. MR 0283172 (44:405)
  • [30] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience, New York, 1974. MR 0419394 (54:7415)
  • [31] V. Losert, On a class of sequences with a strong average property, Adv. in Math. (to appear). MR 778961 (86e:28022)
  • [32] D. Newton and W. Parry, On a factor automorphism of a normal dynamical system, Ann. Math. Statist. 37 (1966), 1528-1533. MR 0206209 (34:6028)
  • [33] J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136. MR 0047262 (13:850e)
  • [34] J. I. Reich, On the Individual Ergodic Theorem for subsequences, Ann. Probab. 5 (1977), 1039-1046. MR 0444906 (56:3252)
  • [35] V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl., Vol. 10, No. 1 (1962), 1-54. MR 0047744 (13:924e)
  • [36] C. Ryll-Nardzewski, Topics in ergodic theory, Lecture Notes in Math., Vol. 472, Springer-Verlag, 1975, pp. 131-156. MR 0390177 (52:11003)
  • [37] W. A. Veech, Commentary on $ [{\mathbf{41a}},{\mathbf{b}}]$, N. Wiener: Collected Works, Vol. 1, Mathematicians of Our Time, M.I.T. Press, Cambridge, Mass., 1976.
  • [38] P. Walters, An introduction to ergodic theory, Graduate Texts in Math. No. 79, Springer-Verlag, New York, 1982. MR 648108 (84e:28017)
  • [39] N. Wiener, Fourier integral and certain of its applications, Cambridge Univ. Press, London and New York, 1933. MR 983891 (90b:42022)
  • [40] N. Wiener and A. Wintner, Harmonic analysis and ergodic theory, Amer. J. Math. 63 (1941), 415-426. MR 0004098 (2:319b)
  • [41] -, On the ergodic dynamics of almost periodic systems, Amer. J. Math. 63 (1941), 794-824. MR 0006618 (4:15a)
  • [42] R. L. Adler, Ed., Ergodic theory and applications, Amer. Math. Soc. Summer Research Conf. (June 13-19, 1982, Univ. of New Hampshire, Durham), Amer. Math. Soc., Providence, R.I. (Informal Proceedings).
  • [43] U. Krengel, Ergodic theorems, monograph, de Gruyter Stud. in Math., de Gruyter, Berlin (to appear). MR 797411 (87i:28001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28D05

Retrieve articles in all journals with MSC: 28D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0773063-8
Keywords: Automorphism, ergodic, discrete spectrum, countable Lebesgue spectrum, $ K$-automorphism, "good universal weight", positive definite function, affinity of two probability measures (=Hellinger integral), correlation of a sequence, spectral measure corresponding to a sequence, Besicovitch class $ B(p)$, almost periodic functions (in the sense of Bohr, Weyl, Eberlein), Bochner-Fejér polynomial, strictly $ L$-stable dynamical system, "uniform sequence", Bohr compactification, sequence that satisfies a "uniform order conditin on $ J$", "saturating sequence", Weak Maximal Inequality, "bad universal sequence", "block sequence", lacunary sequence, "good universal sequence" of density zero
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society