Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Semigroups in Lie groups, semialgebras in Lie algebras
HTML articles powered by AMS MathViewer

by Joachim Hilgert and Karl H. Hofmann PDF
Trans. Amer. Math. Soc. 288 (1985), 481-504 Request permission

Abstract:

Consider a subsemigroup of a Lie group containing the identity and being ruled by one-parameter semigroups near the identity. We associate with it the set $W$ of its tangent vectors at the identity and obtain a subset of the Lie algebra $L$ of the group. The set $W$ has the following properties: (i) $W + W = W$, (ii) ${{\mathbf {R}}^ + } \cdot \;W \subset W$, (iii) ${W^ - } = W$, and, the crucial property, (iv) for all sufficiently small elements $x$ and $y$ in $W$ one has $x \ast y = x + y + \frac {1} {2}[x,y] + \cdots$ (Campbell-Hausdorff!) $\in W$. We call a subset $W$ of a finite-dimensional real Lie algebra $L$ a Lie semialgebra if it satisfies these conditions, and develop a theory of Lie semialgebras. In particular, we show that a subset $W$ satisfying (i)-(iii) is a Lie semialgebra if and only if, for each point $x$ of $W$ and the (appropriately defined) tangent space ${T_x}$ to $W$ in $x$, one has $[x,{T_x}] \subset {T_x}$. (The Lie semialgebra $W$ of a subgroup is always a vector space, and for vector spaces $W$ we have ${T_x} = W$ for all $x$ in $W$, and thus the condition reduces to the old property that $W$ is a Lie algebra.) In the introduction we fully discuss all Lie semialgebras of dimension not exceeding three. Our methods include a full duality theory for closed convex wedges, basic Lie group theory, and certain aspects of ordinary differential equations.
References
  • George Phillip Barker, Faces and duality in convex cones, Linear and Multilinear Algebra 6 (1978/79), no. 3, 161–169. MR 512991, DOI 10.1080/03081087808817234
  • N. Bourbaki, Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1349, Hermann, Paris, 1972. MR 0573068
  • R. W. Brockett, Lie algebras and Lie groups in control theory, Reidel, Hingham, Mass., 1973, pp. 43-82. G. Graham, Differentiability and semigroups, Dissertation, University of Houston, 1979.
  • George E. Graham, Differentiable semigroups, Recent developments in the algebraic, analytical, and topological theory of semigroups (Oberwolfach, 1981) Lecture Notes in Math., vol. 998, Springer, Berlin, 1983, pp. 57–127. MR 724628, DOI 10.1007/BFb0062028
  • Joachim Hilgert and Karl H. Hofmann, Lie theory for semigroups, Semigroup Forum 30 (1984), no. 2, 243–251. MR 760225, DOI 10.1007/BF02573456
  • —, On Sophus Lie’s fundamental theorem, Preprint No. 799, TH Darmstadt, 1984; J. Funct. Analysis (to appear). —, The invariance of cones and wedges under flows, Preprint No. 796, TH Darmstadt, 1983 (submitted).
  • Ronald Hirschorn, Topological semigroups, sets of generators, and controllability, Duke Math. J. 40 (1973), 937–947. MR 325837
  • Karl H. Hofmann and Jimmie D. Lawson, The local theory of semigroups in nilpotent Lie groups, Semigroup Forum 23 (1981), no. 4, 343–357. MR 638578, DOI 10.1007/BF02676658
  • K. H. Hofmann and J. D. Lawson, Foundations of Lie semigroups, Recent developments in the algebraic, analytical, and topological theory of semigroups (Oberwolfach, 1981) Lecture Notes in Math., vol. 998, Springer, Berlin, 1983, pp. 128–201. MR 724629, DOI 10.1007/BFb0062029
  • —, On Sophus Lie’s fundamental theorems I and II, Indag. Math. 45 (1983), 453-466; ibid. 46 (1984), 255-265.
  • Karl H. Hofmann and Jimmie D. Lawson, Divisible subsemigroups of Lie groups, J. London Math. Soc. (2) 27 (1983), no. 3, 427–434. MR 697136, DOI 10.1112/jlms/s2-27.3.427
  • —, On the description of the closed local semigroup generated by a wedge, SLS-Memo, 03-16-83, 1983.
  • Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
  • Velimir Jurdjevic and Héctor J. Sussmann, Control systems on Lie groups, J. Differential Equations 12 (1972), 313–329. MR 331185, DOI 10.1016/0022-0396(72)90035-6
  • R. P. Langlands, On Lie semi-groups, Canadian J. Math. 12 (1960), 686–693. MR 121667, DOI 10.4153/CJM-1960-061-0
  • Charles Loewner, On semigroups in analysis and geometry, Bull. Amer. Math. Soc. 70 (1964), 1–15. MR 160192, DOI 10.1090/S0002-9904-1964-11015-6
  • G. I. Ol′shanskiĭ, Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series, Funktsional. Anal. i Prilozhen. 15 (1981), no. 4, 53–66, 96 (Russian). MR 639200
  • —, Convex cones in symmetric Lie algebras, Lie semigroups and invariant causal (order) structures on pseudo-Riemannian symmetric spaces, Soviet. Math. Dokl. 26 (1982), 97-101.
  • R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
  • L. J. M. Rothkrantz, Transformatiehalfgroepen van niet-compacte hermitische symmetrische Ruimten, Dissertation, University of Amsterdam, 1980. S. Straszewicz, Über exponierte Punkte abeschlossener Punktmengen, Fund. Math. 24 (1935), 139-143.
  • È. B. Vinberg, Invariant convex cones and orderings in Lie groups, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 1–13, 96 (Russian). MR 565090
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E15, 22A99, 22E05
  • Retrieve articles in all journals with MSC: 22E15, 22A99, 22E05
Additional Information
  • © Copyright 1985 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 288 (1985), 481-504
  • MSC: Primary 22E15; Secondary 22A99, 22E05
  • DOI: https://doi.org/10.1090/S0002-9947-1985-0776389-7
  • MathSciNet review: 776389