Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Index theory on curves


Author: Peter Haskell
Journal: Trans. Amer. Math. Soc. 288 (1985), 591-604
MSC: Primary 58G10; Secondary 46L80, 46M20, 58G12
DOI: https://doi.org/10.1090/S0002-9947-1985-0776394-0
MathSciNet review: 776394
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper constructs from the $ \bar \partial $-operator on the smooth part of a complex projective algebraic curve a cycle in the analytically defined $ K$ homology of the curve. The paper identifies the corresponding cycle in the topologically defined $ K$ homology.


References [Enhancements On Off] (What's this?)

  • [1] M. Atiyah, Global theory of elliptic operators, Proc. Internat. Conf. on Functional Analysis and Related Topics, Univ. of Tokyo Press, Tokyo, 1970, pp. 21-30. MR 0266247 (42:1154)
  • [2] -, $ K$-theory, Benjamin, New York, 1967. MR 0224083 (36:7130)
  • [3] M. Atiyah and I. Singer, The index of elliptic operators. I, Ann. of Math. 87 (1968), 484-530. MR 0236950 (38:5243)
  • [4] P. Baum and R. Douglas, $ K$ homology and index theory, Proc. Sympos. Pure Math., vol. 38, part 1, Amer. Math. Soc., Providence, R. I., 1982, pp. 117-173. MR 679698 (84d:58075)
  • [5] J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, R. I., 1980, pp. 91-146. MR 573430 (83a:58081)
  • [6] -, On the spectral geometry of spaces with cone-like singularities, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 2103-2106. MR 530173 (80k:58098)
  • [7] J. Cheeger, M. Goresky and R. MacPherson, $ {L^2}$-cohomology and intersection homology of singular algebraic varieties, Seminar on Differential Geometry (S.-T. Yau, ed.), Princeton Univ. Press, Princeton, N. J., 1982, pp. 303-340. MR 645745 (84f:58005)
  • [8] J. Cheeger and M. Taylor, On the diffraction of waves by conical singularities. I, Comm. Pure Appl. Math. 35 (1982), 275-331. MR 649347 (84h:35091a)
  • [9] R. Douglas, $ {C^\ast}$-algebra extensions and $ K$-homology, Princeton Univ. Press, Princeton, N. J., 1980. MR 571362 (82c:46082)
  • [10] H. Dwight, Tables of integrals and other mathematical data, Macmillan, New York, 1961. MR 0129577 (23:B2613)
  • [11] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978. MR 507725 (80b:14001)
  • [12] J. Milnor, Singular points of complex hypersurfaces, Princeton Univ. Press, Princeton, N. J., 1968. MR 0239612 (39:969)
  • [13] F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1978.
  • [14] M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N. J., 1981.
  • [15] G. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1966. MR 1349110 (96i:33010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58G10, 46L80, 46M20, 58G12

Retrieve articles in all journals with MSC: 58G10, 46L80, 46M20, 58G12


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0776394-0
Keywords: $ K$ homology, index of elliptic operator, complex algebraic curve
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society