Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Primitive group rings and Noetherian rings of quotients


Authors: Christopher J. B. Brookes and Kenneth A. Brown
Journal: Trans. Amer. Math. Soc. 288 (1985), 605-623
MSC: Primary 16A27; Secondary 16A20, 16A33, 20C07
DOI: https://doi.org/10.1090/S0002-9947-1985-0776395-2
MathSciNet review: 776395
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be a field, and let $ G$ be a countable nilpotent group with centre $ Z$. We show that the group algebra $ kG$ is primitive if and only if $ k$ is countable, $ G$ is torsion free, and there exists an abelian subgroup $ A$ of $ G$, of infinite rank, with $ A \cap Z = 1$. Suppose now that $ G$ is torsion free. Then $ kG$ has a partial quotient ring $ Q = kG{(kZ)^{ - 1}}$. The above characterisation of the primitivity of $ kG$ is intimately connected with the question: When is $ Q$ a Noetherian ring? We determine this for those groups $ G$, as above, all of whose finite rank subgroups are finitely generated. In this case, $ Q$ is Noetherian if and only if $ G$ has no abelian subgroup $ A$ of infinite rank with $ A \cap Z = 1$.


References [Enhancements On Off] (What's this?)

  • [1] C. J. B. Brookes, The primitivity of group rings of soluble groups with trivial periodic radical, J. London Math. Soc. (to appear). MR 810560 (86k:20002)
  • [2] K. A. Brown, The Nullstellensatz for certain group rings, J. London Math. Soc. (2) 26 (1982), 425-434. MR 684556 (84c:16013)
  • [3] -, Primitive group rings of soluble groups, Arch. Math. 36 (1981), 404-413. MR 629271 (82j:20016)
  • [4] W. D. Burgess, Rings of quotients of group rings, Canad. J. Math. 21 (1969), 865-875. MR 0244399 (39:5714)
  • [5] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I, Wiley-Interscience, New York, 1981. MR 632548 (82i:20001)
  • [6] R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc. No. 133 (1973). MR 0352177 (50:4664)
  • [7] R. Gordon, Gabriel and Krull dimension, Ring Theory, Proc. Oklahoma Conf., Dekker, New York, 1974, pp. 241-295. MR 0374188 (51:10388)
  • [8] P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595-622. MR 0110750 (22:1618)
  • [9] D. S. Passman, The algebraic structure of group rings, Wiley-Interscience, New York, 1977. MR 470211 (81d:16001)
  • [10] D. J. S. Robinson, Finiteness conditions and generalised soluble groups. Vols. I, II, Springer-Verlag, Berlin, 1972.
  • [11] J. E. Roseblade, Prime ideals in group rings of polycyclic groups, Proc. London Math. Soc. 36 (1978), 385-447. MR 0491797 (58:10996a)
  • [12] D. Segal, On the residual simplicity of certain modules, Proc. London Math. Soc. 34 (1977), 327-353. MR 0453877 (56:12130)
  • [13] R. C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math. 42 (1972), 251-257. MR 0318201 (47:6748)
  • [14] P. F. Smith, Quotient rings of group rings, J. London Math. Soc. (2) 3 (1971), 645-660. MR 0314886 (47:3435)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A27, 16A20, 16A33, 20C07

Retrieve articles in all journals with MSC: 16A27, 16A20, 16A33, 20C07


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0776395-2
Keywords: Group ring, primitive ring, Noetherian ring, nilpotent group
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society