General position properties satisfied by finite products of dendrites

Author:
Philip L. Bowers

Journal:
Trans. Amer. Math. Soc. **288** (1985), 739-753

MSC:
Primary 54F50; Secondary 54C25, 54C35, 54F35

MathSciNet review:
776401

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a dendrite whose endpoints are dense and let be the complement in of a dense -compact collection of endpoints of . This paper investigates various general position properties that finite products of and possess. In particular, it is shown that (i) if is an -space that satisfies the disjoint -cells property, then satisfies the disjoint -cells property, (ii) is a compact -dimensional that satisfies the disjoint -cells property, (iii) is a compact -dimensional that satisfies the stronger general position property that maps of -dimensional compacta into are approximable by both -maps and -embeddings, and (iv) is a topologically complete -dimensional that satisfies the discrete -cells property and as such, maps from topologically complete separable -dimensional spaces into are strongly approximable by closed -embeddings.

**[**R. D. Anderson, D. W. Curtis, and J. van Mill,**ACM**]*A fake topological Hilbert space*, Trans. Amer. Math. Soc.**272**(1982), no. 1, 311–321. MR**656491**, 10.1090/S0002-9947-1982-0656491-8**[**P. L. Bowers,**Bo**]*Applications of general position properties of dendrites to Hilbert space topology*, Ph.D. Dissertation, Univ. of Tennessee, 1983.**[**Philip L. Bowers,**Bo**]*Discrete cells properties in the boundary set setting*, Proc. Amer. Math. Soc.**93**(1985), no. 4, 735–740. MR**776212**, 10.1090/S0002-9939-1985-0776212-6**[**J. W. Cannon,**Ca**]*Shrinking cell-like decompositions of manifolds. Codimension three*, Ann. of Math. (2)**110**(1979), no. 1, 83–112. MR**541330**, 10.2307/1971245**[**T. A. Chapman,**Ch**]*Lectures on Hilbert cube manifolds*, American Mathematical Society, Providence, R. I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975; Regional Conference Series in Mathematics, No. 28. MR**0423357****[**D. W. Curtis,**Cu**]*Boundary sets in the Hilbert cube*, preprint.**[**-,**Cu**]*Preliminary report, boundary sets in the Hilbert cube and applications to hyperspaces*, preprint.**[**Robert J. Daverman,**Da**]*Detecting the disjoint disks property*, Pacific J. Math.**93**(1981), no. 2, 277–298. MR**623564****[**Robert J. Daverman and John J. Walsh,**DW**]*Čech homology characterizations of infinite-dimensional manifolds*, Amer. J. Math.**103**(1981), no. 3, 411–435. MR**618319**, 10.2307/2374099**[**Tadeusz Dobrowolski and Henryk Toruńczyk,**DT**]*On metric linear spaces homeomorphic to 𝑙₂ and compact convex sets homeomorphic to 𝑄*, Bull. Acad. Polon. Sci. Sér. Sci. Math.**27**(1979), no. 11-12, 883–887 (1981) (English, with Russian summary). MR**616181****[**James Dugundji,**Du**]*Topology*, Allyn and Bacon, Inc., Boston, Mass., 1966. MR**0193606****[**R. D. Edwards,**Ed**]*Approximating certain cell-like maps by homeomorphisms*, Abstract preprint. See also Notices Amer. Math. Soc.**24**(1977), A649, #751-G5.**[**Witold Hurewicz and Henry Wallman,**HW**]*Dimension Theory*, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR**0006493****[**Jan van Mill,**vM**]*A boundary set for the Hilbert cube containing no arcs*, Fund. Math.**118**(1983), no. 2, 93–102. MR**732657****[**Frank Quinn,**Qu**]*Ends of maps. I*, Ann. of Math. (2)**110**(1979), no. 2, 275–331. MR**549490**, 10.2307/1971262**[**K. Sieklucki,**Si**]*A generalization of a theorem of K. Borsuk concerning the dimension of 𝐴𝑁𝑅-sets*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**10**(1962), 433–436. MR**0198430****[**H. Toruńczyk,**To**]*On 𝐶𝐸-images of the Hilbert cube and characterization of 𝑄-manifolds*, Fund. Math.**106**(1980), no. 1, 31–40. MR**585543****[**H. Toruńczyk,**To**]*Characterizing Hilbert space topology*, Fund. Math.**111**(1981), no. 3, 247–262. MR**611763****[**Stephen Willard,**Wi**]*General topology*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR**0264581**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54F50,
54C25,
54C35,
54F35

Retrieve articles in all journals with MSC: 54F50, 54C25, 54C35, 54F35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1985-0776401-5

Keywords:
Disjoint -cells property,
discrete -cells property,
locally -connected in

Article copyright:
© Copyright 1985
American Mathematical Society