Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Anosov diffeomorphisms and expanding immersions. I


Author: Lowell Jones
Journal: Trans. Amer. Math. Soc. 289 (1985), 115-131
MSC: Primary 58F12; Secondary 57R42, 57R50, 58F15
DOI: https://doi.org/10.1090/S0002-9947-1985-0779055-7
MathSciNet review: 779055
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to develop a theory for representing Anosov diffeomorphisms by expanding immersions on compact branched manifolds. This theory was motivated by R. F. Williams' study of expanding attractors [15,17].


References [Enhancements On Off] (What's this?)

  • [1] D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov 90 (1967). MR 0224110 (36:7157)
  • [2] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., vol. 470, Springer, Berlin and New York, 1975. MR 0442989 (56:1364)
  • [3] F. T. Farrell and L. E. Jones, New attractors in hyperbolic dynamics, J. Differential Geometry 15 (1980), 107-133. MR 602444 (82h:58025)
  • [4] -, Expanding immersions on branched manifolds, Amer. J. Math. 103 (1981), 41-101. MR 601462 (84m:58079)
  • [5] J. Franks, Anosov diffeomorphisms, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 61-93. MR 0271990 (42:6871)
  • [6] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. No. 53(1981), 53-73. MR 623534 (83b:53041)
  • [7] J. Guckenheimer, Endomorphisms of the Riemann sphere, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970, pp. 85-123. MR 0274740 (43:500)
  • [8] L. Jones, Locally strange hyperbolic sets, Trans. Amer. Math. Soc. 275 (1983), 153-162. MR 678341 (84b:58085)
  • [9] -, Anosov diffeomorphism and expanding immersions. II, preprint.
  • [10] C. Robinson and R. F. Williams, Classification of expanding attractors: an example, Topology 15 (1976), 321-323. MR 0415682 (54:3762)
  • [11] M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175-199. MR 0240824 (39:2169)
  • [12] Ya. Sinai, Markov partitions and $ C$-diffeomorphisms, Funkcional Anal. i Priložen. 2 (1968), 64-89. MR 0233038 (38:1361)
  • [13] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 0228014 (37:3598)
  • [14] D. Sullivan and R. F. Williams, On the homology of attractors, Topology 15 (1976), 259-262. MR 0413185 (54:1304)
  • [15] R. F. Williams, One-dimensional non-wandering sets, Topology 6 (1967), 473-487. MR 0217808 (36:897)
  • [16] -, Classifications of $ 1$-dimensional attractors, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970, pp. 341-361.
  • [17] -, Expanding attractors, Inst. Hautes Études Sci. Publ. Math. No. 43 (1973), 169-203. MR 0348794 (50:1289)
  • [18] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215-223. MR 0095518 (20:2020)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F12, 57R42, 57R50, 58F15

Retrieve articles in all journals with MSC: 58F12, 57R42, 57R50, 58F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0779055-7
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society