Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On contractions of semisimple Lie groups


Authors: A. H. Dooley and J. W. Rice
Journal: Trans. Amer. Math. Soc. 289 (1985), 185-202
MSC: Primary 22E46
DOI: https://doi.org/10.1090/S0002-9947-1985-0779059-4
MathSciNet review: 779059
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A limiting formula is given for the representation theory of the Cartan motion group associated to a Riemannian symmetric pair $ (G,K)$ in terms of the representation theory of $ G$.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977), 1-62. MR 0463358 (57:3310)
  • [2] L. Auslander and B. Kostant, Polarisation and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255-354. MR 0293012 (45:2092)
  • [3] E. Cartan, Sur la détermination d'un système orthogonal complet dans un espace de Riemann symmetrique clos., Rend. Circ. Math. Palermo 53 (1929), 217-252.
  • [4] J.-L. Clerc, Une formule asymptotique du type Mehler-Heine pour les zonales d'un espace riemannien symétrique, Studia Math. 57 (1976), 27-32. MR 0425521 (54:13476)
  • [5] A. H. Dooley and J. W. Rice, Contractions of rotation groups and their representations, Math. Proc. Cambridge Philos. Soc. 94 (1983), 509-517. MR 720801 (87a:22022)
  • [6] R. Gilmore, Lie groups, Lie algebras, and some of their applications, Wiley, New York, 1974.
  • [7] V. Guillemin and S. Sternberg, Geometric asymptotics, Math. Surveys, no. 14, Amer. Math. Soc., Providence, R. I., 1977. MR 0516965 (58:24404)
  • [8] H. Hecht and W. Schmid, A proof of Blattner's conjecture, Invent. Math. 31 (1975), 129-154. MR 0396855 (53:715)
  • [9] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 0145455 (26:2986)
  • [10] -, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. MR 514561 (80k:53081)
  • [11] -, A duality for symmetric spaces with applications to group representations. III. Tangent space analysis, Adv. in Math. 36 (1980), 297-323. MR 577307 (81g:22021)
  • [12] J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1980. MR 499562 (81b:17007)
  • [13] E. Inönu and E. P. Wigner, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 510-524. MR 0055352 (14:1061c)
  • [14] A. Kleppner and R. L. Lipsman, The Plancherel formula for group extensions, Ann. Sci. Ecole Norm. Sup. (4) 5 (1972), 459-516. MR 0342641 (49:7387)
  • [15] M. Lasalle, Série de Laurent des fonctions holomorphes dans la complexification d'un espace symmetrique compacte, Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), 167-210. MR 510548 (80f:22006)
  • [16] M. Lévy-Nahas, Deformation and contraction of Lie algebras, J. Math. Phys. 8 (1967), 1211-1222. MR 0224747 (37:346)
  • [17] R. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math. Pures. Appl. 59 (1980), 337-374. MR 604474 (82b:22026)
  • [18] G. W. Mackey, On the analogy between semisimple Lie groups and certain related semi-direct product groups, in Lie Groups and Their Representations (ed., I. M. Gelfand), Hilger, London, 1975. MR 0409726 (53:13478)
  • [19] -, Induced representations of groups and quantum mechanics, Benjamin, New York, 1968. MR 0507212 (58:22373)
  • [20] N. Mukunda, Expansion of Lie groups and representations of $ SL(3,C)$, J. Math. Phys. 10 (1969), 897-911. MR 0246583 (39:7887)
  • [21] A. Nijenhuis and R. W. Richardson, Deformations of homorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc. 73 (1967), 175-179. MR 0204575 (34:4414)
  • [22] E. J. Saletan, Contraction of Lie groups, J. Math. Phys. 2 (1961), 1-21. MR 0127213 (23:B259)
  • [23] G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York, 1972. MR 0498999 (58:16979)
  • [24] N. Wallach, Harmonic analysis on homogeneous spaces, Marcel Dekker, New York, 1973. MR 0498996 (58:16978)
  • [25] J. A. Wolf, Orbit method and non-degenerate series, Hiroshima Math J. 4 (1974), 619-628. MR 0357691 (50:10159)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E46

Retrieve articles in all journals with MSC: 22E46


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0779059-4
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society