Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A nonshrinkable decomposition of $ S\sp 3$ whose nondegenerate elements are contained in a cellular arc


Authors: W. H. Row and John J. Walsh
Journal: Trans. Amer. Math. Soc. 289 (1985), 227-252
MSC: Primary 57N10; Secondary 54B10, 57N30, 57N60
DOI: https://doi.org/10.1090/S0002-9947-1985-0779062-4
MathSciNet review: 779062
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A decomposition $ G$ of $ {S^3}$ is constructed with the following properties:

(1) The set $ {N_G}$ of all nondegenerate elements consists of a null sequence of arcs and $ J = {\text{CL}}( \cup \{ g \in {N_G}\} )$ is a simple closed curve.

(2) Each arc contained in $ J$ is cellular.

(3) $ J$ is the boundary of a disk $ Q$ that is locally flat except at points of $ J$.

(4) The decomposition $ G$ is not shrinkable; that is, the decomposition space is not homeomorphic to $ {S^3}$.


References [Enhancements On Off] (What's this?)

  • [Ar] S. Armentrout, Cellular decompositions of $ 3$-manifolds that yield $ 3$-manifolds, Mem. Amer. Math. Soc. No. 107(1971). MR 0413104 (54:1225)
  • [Ba] C. D. Bass, Squeezing $ m$-cells to $ (m - 1)$-cells in $ {E^n}$, Fund. Math. 110 (1980), 35-50. MR 600578 (82a:57011)
  • [Bi] R. H. Bing, Point-like decompositions of $ {E^3}$ Fund. Math. 50 (1962), 431-453. MR 0137104 (25:560)
  • [BS] R. H. Bing and M. Starbird, A decomposition of $ {S^3}$ with a null sequence of cellular arcs, Geometric Topology (J. C. Cantrell, ed.), Academic Press, New York, 1979, pp 3-21. MR 537722 (80i:57008)
  • [Da $ _{\mathbf{1}}$] R. J. Daverman, A nonshrinkable decomposition of $ {S^n}$ determined by a null sequence of cellular sets, Proc. Amer. Math. Soc. 75 (1979), 171-176. MR 529236 (80j:57015)
  • [Da $ _{\mathbf{2}}$] -, Shrinking certain closed $ 1$-dimensional decompositions of manifolds, Houston J. Math. 5 (1979), 41-47. MR 533638 (80j:57014)
  • [Da $ _{\mathbf{3}}$] -, On cells in Euclidean space that cannot be squeezed, Rocky Mountain J. Math. 5 (1975), 87-93. MR 0370598 (51:6825)
  • [DE $ _{\mathbf{1}}$] R. J. Daverman and W. T. Eaton, An equivalence for the embeddings of cells in a $ 3$-manifold, Trans. Amer. Math. Soc. 145 (1969), 369-381. MR 0250280 (40:3519)
  • [DE $ _{\mathbf{2}}$] -, A dense set of sewings of two crumpled cubes yield $ {S^3}$, Fund. Math. 65 (1969), 51-60. MR 0243500 (39:4821)
  • [DW] R. J. Daverman and J. J. Walsh, A nonshrinkable decomposition of $ {S^n}$ involving a null sequence of cellular sets, Trans. Amer. Math. Soc. 272 (1982), 771-784. MR 662066 (83m:57012)
  • [Ed] R. D. Edwards, Approximating certain cell-like maps by homeomorphisms, Notices Amer. Math. Soc. 24 (1977), A-649.
  • [Fr] M. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357-453. MR 679066 (84b:57006)
  • [GM] D. S. Gillman and J. M. Martin, Countable decompositions of $ {E^3}$ into points and point-like arcs, Notices Amer. Math. Soc. 10 (1963), 74-75.
  • [Mc] D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327-337. MR 0161320 (28:4528)
  • [Wr] D. G. Wright, A decomposition of $ {E^n}(n \geqslant 3)$ into points and a null sequence of cellular sets, General Topology Appl. 10 (1979), 297-304. MR 546103 (81a:57014)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N10, 54B10, 57N30, 57N60

Retrieve articles in all journals with MSC: 57N10, 54B10, 57N30, 57N60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0779062-4
Keywords: Cellular decomposition, cellular arc, nonshrinkable, $ 3$-manifold
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society