Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the structure of weakly compact subsets of Hilbert spaces and applications to the geometry of Banach spaces


Authors: S. Argyros and V. Farmaki
Journal: Trans. Amer. Math. Soc. 289 (1985), 409-427
MSC: Primary 46B20; Secondary 46C10
DOI: https://doi.org/10.1090/S0002-9947-1985-0779073-9
MathSciNet review: 779073
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A characterization of weakly compact subsets of a Hilbert space, when they are considered as subsets of $ B$-spaces with an unconditional basis, is given. We apply this result to renorm a class of reflexive $ B$-spaces by defining a norm uniformly convex in every direction. We also prove certain results related to the factorization of operators. Finally, we investigate the structure of weakly compact subsets of $ {L^1}(\mu )$.


References [Enhancements On Off] (What's this?)

  • [1] A. Abramovich, Weakly compact sets in topological $ K$-spaces, Theor. Funktsii Funktsional. Anal. I Prilozhen 15 (1972), 27-35.
  • [2] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35-46. MR 0228983 (37:4562)
  • [3] S. Argyros, On nonseparable Banach spaces, Trans. Amer. Math. Soc. 210 (1982), 193-216. MR 642338 (84f:46018)
  • [4] Y. Benyamini and T. Starbird, Embedding weakly compact sets into Hilbert space, Israel J. Math. 23 (1976), 137-141. MR 0397372 (53:1231)
  • [5] Y. Benyamini, M. E. Rudin and M. Wage, Continuous image of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324. MR 0625889 (58:30065)
  • [6] W. J. Davies, T. Figiel, W. B. Johnson and A. Pełczynski, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. MR 0355536 (50:8010)
  • [7] M. Day, R. C. James and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math. 23 (1971), 1051-1059. MR 0287285 (44:4492)
  • [8] J. Diestel, Geometry of Banach spaces, Selected Topics, Lecture Notes in Math., vol. 485, Springer-Verlag, Berlin and New York. MR 0461094 (57:1079)
  • [9] W. F. Eberlein, Weak compactness in Banach spaces. I, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 51-53. MR 0021239 (9:42a)
  • [10] T. Figiel, W. Johnson and L. Tzafriri, On $ B$-lattices and spaces having local unconditional structure with application to Lorentz functions spaces, J. Approx. Theory 13 (1975), 395-412. MR 0367624 (51:3866)
  • [11] A. L. Garkavi, On the Chebyshev center of a set in a normed space, Investigations on Contemporary Problems in the Constructive Theory of Function, Moscow, 1981, pp. 328-331. MR 0188752 (32:6188)
  • [12] R. C. James, Super reflexive spaces with bases, Pacific J. Math. 41 (1972), 409-419. MR 0308752 (46:7866)
  • [13] D. N. Kutzarova and S. L. Troyanski, Reflexive Banach spaces without equivalent norms which are uniformly convex or uniformly differential in every direction, Studia Math. 72 (1982), 92-95. MR 665893 (83k:46024)
  • [14] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in Math., vol. 338, Springer-Verlag, Berlin and New York. MR 0415253 (54:3344)
  • [15] R. Phelps, Lectures in Choquet's theorem, Van Nostrand Math. Studies, Vol. 7, Van Nostrand, Princeton, N. J.
  • [16] H. P. Rosenthal, The hereditary problem for weakly compactly generated Banach spaces, Compositio Math. 28 (1974), 83-111. MR 0417762 (54:5810)
  • [17] N. Shanin, On the product of topological space, Trudy Mat. Inst. Akad. Nauk. SSSR 24 (1948), 112 pages (Russian).
  • [18] S. L. Troyanski, On uniform convexity and smoothness in every direction in non-separable Banach spaces with an unconditional basis, C. R. Acad. Bulgare Sci. 30 (1977), 1243-1246. MR 0500080 (58:17787)
  • [19] -, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1971), 173-180. MR 0306873 (46:5995)
  • [20] V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. 87 (1971), 5-33. MR 0300060 (45:9108)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B20, 46C10

Retrieve articles in all journals with MSC: 46B20, 46C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0779073-9
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society