FIXED POINTS AND CONJUGACY CLASSES
OF REGULAR ELLIPTIC ELEMENTS IN $\text{Sp}(3, \mathbb{Z})$

BY

MINKING EIE AND CHUNG-YUAN LIN

Abstract. In this paper, we obtain 13 isolated fixed points (up to a $\text{Sp}(3, \mathbb{Z})$-equivalence) and 86 conjugacy classes of regular elliptic elements in $\text{Sp}(3, \mathbb{Z})$. Hence the contributions from regular elliptic conjugacy classes in $\text{Sp}(3, \mathbb{Z})$ to the dimension formula computed via the Selberg trace formula can be computed explicitly by the main theorem of [4 or 5].

Introduction. In [6 and 7], E. Gottschling studied the fixed points and their isotropy groups of finite order elements in $\text{Sp}(2, \mathbb{Z})$. He finally obtained six $\text{Sp}(2, \mathbb{Z})$-inequivalent isolated fixed points as follows:

(1) $Z_1 = \text{diag}[i, i]$,
(2) $Z_2 = \text{diag}[\rho, \rho]$, $\rho = e^{\pi i/3}$,
(3) $Z_3 = \text{diag}[i, \rho]$,
(4) $Z_4 = \frac{i}{\sqrt{3}} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$,
(5) $Z_5 = \begin{bmatrix} \eta & (\eta - 1)/2 \\ (\eta - 1)/2 & \eta \end{bmatrix}$, $\eta = \frac{1}{3} + \frac{2\sqrt{2}i}{3}$,
(6) $Z_6 = \begin{bmatrix} \omega & \omega + \omega^{-2} \\ \omega + \omega^{-2} & -\omega^{-1} \end{bmatrix}$, $\omega = e^{2\pi i/5}$.

The isotropy subgroups at Z_i ($i = 1, 2, 3, 4, 5, 6$) are groups of order 16, 36, 12, 12, 24 and 5, respectively.

By the argument of [9], these fixed points can be obtained from symplectic embeddings of $Q(i) \oplus Q(i), Q(\rho) \oplus Q(\rho), Q(i) \oplus Q(\rho), Q(e^{\pi i/6}), Q(e^{\pi i/4}), Q(e^{2\pi i/5})$, into $M_4(Q)$. In this paper, we shall combine the reduction theory of symplectic matrices [2, 3] with the arguments of [8, 9] and obtain all $\text{Sp}(3, \mathbb{Z})$-inequivalent isolated fixed point and conjugacy classes of regular elliptic elements in $\text{Sp}(3, \mathbb{Z})$. A table for all representatives and their centralizer in $\text{Sp}(3, \mathbb{Z})/\{\pm 1\}$ of regular elliptic conjugacy classes in $\text{Sp}(3, \mathbb{Z})$ is given.
1. Notations and basic results. Let \mathbb{Z}, \mathbb{Q}, \mathbb{R} and \mathbb{C} denote the ring of integers, the fields of rational, real and complex numbers, respectively. The real symplectic matrices of degree n,

$$\text{Sp}(n, \mathbb{R}) = \left\{ M \in M_{2n}(\mathbb{R}) | \text{tr}M = J, J = \begin{bmatrix} 0 & E_n \\ -E_n & 0 \end{bmatrix} \right\},$$

act on the generalized half space H_n defined by

$$H_n = \left\{ Z \in M_n(\mathbb{C}) | Z = Z^*, \text{Im}Z > 0 \right\}.$$

Here $M_{2n}(\mathbb{R})$ is the $2n \times 2n$ matrix ring over \mathbb{R}, $M_n(\mathbb{C})$ is the $n \times n$ matrix ring over \mathbb{C}, E_n is the identity of $M_n(\mathbb{C})$ and Z^* is the transpose of Z.

A point Z_0 in H_n is called an isolated fixed point of $\text{Sp}(3, \mathbb{Z})$ if there exists $M = [\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}]$ in $\text{Sp}(3, \mathbb{Z})$ such that Z_0 is the unique solution of the equation,

$$AZ + B = Z(CZ + D), \quad Z \in H_n.$$

An element M of $\text{Sp}(3, \mathbb{Z})$ is regular elliptic if M has an isolated fixed point (see [4]). Now suppose M is a regular elliptic element of $\text{Sp}(3, \mathbb{Z})$; then by the discreteness of $\text{Sp}(3, \mathbb{Z})$ and the property that $\text{Sp}(3, \mathbb{Z})$ acts transitively on H_3, we conclude that

1. M is an element of finite order,
2. M is conjugate in $\text{Sp}(3, \mathbb{R})$ to $[\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}]$ with $A + Bi = \text{diag}[\lambda_1, \lambda_2, \lambda_3], \lambda_i (i = 1, 2, 3)$ root of unity and $\lambda_i, \lambda_j \neq 1$ for all i, j,
3. the centralizer of M in $\text{Sp}(3, \mathbb{Z})$ is a group of finite order.

By property (1), we see that the minimal polynomial of M is a product of different cyclotomic polynomials as follow: $X^2 + 1, X^2 - X + 1, X^2 + X + 1, X^4 + 1, X^4 - X^2 + 1, X^4 + X^3 + X^2 + X + 1, X^4 - X^3 + X^2 - X + 1, X^6 - X^3 + 1, X^6 + X^5 + X^4 + X^3 + X^2 + X + 1, X^6 - X^5 + X^4 - X^3 + X^2 - X + 1$.

For our convenience, we identify $\text{Sp}(n_1, \mathbb{R}) \times \text{Sp}(n_2, \mathbb{R})$ as a subgroup of $\text{Sp}(n_1 + n_2, \mathbb{R})$ via the embedding

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} P & Q \\ R & S \end{bmatrix} \rightarrow \begin{bmatrix} A & 0 & B & 0 \\ 0 & P & 0 & Q \\ C & 0 & D & 0 \\ 0 & R & 0 & S \end{bmatrix}.$$
Now suppose the characteristic polynomial \(P(X) \) of \(M \) is reducible over \(\mathbb{Z}[X] \); then we obtain the following ten possible fixed points for \(M \) simply from fixed points of regular elliptic elements of \(\text{SL}_2(\mathbb{Z}) \) and \(\text{Sp}(2, \mathbb{Z}) \).

1. \(Z_{01} = \text{diag}[i, i, i] \),
2. \(Z_{02} = [\rho, \rho, \rho] \),
3. \(Z_{03} = \text{diag}[\rho, i, i] \),
4. \(Z_{04} = [i, \rho, \rho] \),
5. \(Z_{05} = \begin{bmatrix} i & 0 & 0 \\ 0 & \eta & (\eta - 1)/2 \\ 0 & (\eta - 1)/2 & \eta \end{bmatrix} \), \(\eta = \frac{1}{3} + \frac{2\sqrt{2}i}{3} \),
6. \(Z_{06} = \frac{i}{\sqrt{3}} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \),
7. \(Z_{07} = \begin{bmatrix} i & 0 & 0 \\ 0 & \omega & \omega + \omega^{-2} \\ 0 & \omega + \omega^{-2} & -\omega^{-1} \end{bmatrix} \), \(\omega = e^{2\pi i/5} \),
8. \(Z_{08} = \begin{bmatrix} \rho & 0 & 0 \\ 0 & \eta & (\eta - 1)/2 \\ 0 & (\eta - 1)/2 & \eta \end{bmatrix} \),
9. \(Z_{09} = \frac{i}{\sqrt{3}} \begin{bmatrix} 1 + \bar{\rho} & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \),
10. \(Z_{10} = \begin{bmatrix} \rho & 0 & 0 \\ 0 & \omega & \omega + \omega^{-2} \\ 0 & \omega + \omega^{-2} & -\omega^{-1} \end{bmatrix} \).

Let \(G_i (i = 01, 02, 03, 04, 05, 06, 07, 08, 09, 10) \) be the isotropy group of \(\text{Sp}(3, \mathbb{Z})/\{ \pm 1 \} \) at \(Z_i (i = 01, 02, 03, 04, 05, 06, 07, 08, 09, 10) \), respectively. Then a direct calculation shows that the order of \(G_i (i = 01, 02, \ldots, 10) \) are 192, 648, 96, 144, 96, 48, 20, 144, 72, 30, respectively. By considering conjugacy classes in \(G_i (i = 01, 02, \ldots, 10) \), we get 72 conjugacy classes of regular elliptic elements of \(\text{Sp}(3, \mathbb{Z}) \) as shown in the table.

Now we shall show that every regular elliptic element with reducible characteristic polynomial is conjugate in \(\text{Sp}(3, \mathbb{Z}) \) to one of these 72 conjugacy classes. First we need

Lemma 1. Suppose \(M \in \text{Sp}(n, \mathbb{Z}) \) with characteristic polynomial \(P(X) \) satisfying

1. \(P(X) \) is a product of two relative prime polynomials \(P_1(X) \) and \(P_2(X) \) with integral coefficients of degrees \(2n_1 \) and \(2n_2 \) \((n_1 + n_2 = n)\), respectively,
2. \(P_i(X) = X^{2n}P_i(1/X), i = 1, 2 \).

Then there exists \(R \in \text{Sp}(n, \mathbb{Q}) \) such that \(R^{-1}MR = M_1 \times M_2 \in \text{Sp}(n_1, \mathbb{Q}) \times \text{Sp}(n_2, \mathbb{Q}) \). Furthermore, the characteristic polynomial of \(M_1 \) (resp. \(M_2 \)) is \(P_1(X) \) (resp. \(P_2(X) \)).

Proof. (See Lemmas 1 and 2 of [2].)
Lemma 2. Let $M \in \text{Sp}(n, \mathbb{Z})$. Suppose that there exists $R \in \text{Sp}(n, \mathbb{Q})$ such that
\[
R^{-1}MR = \begin{bmatrix}
A & 0 & B & \ast \\
\ast & U & \ast & \ast \\
C & 0 & D & \ast \\
0 & 0 & 0 & U^{-1}
\end{bmatrix}.
\]
Then there exists $\tilde{R} \in \text{Sp}(n, \mathbb{Z})$ such that $\tilde{R}^{-1}M\tilde{R}$ has the same form as $R^{-1}MR$.

Proof. (See Satz 2 of [3].)

Theorem 1. Suppose M is a regular elliptic element of $\text{Sp}(3, \mathbb{Z})$ with a reducible characteristic polynomial $P(X)$. Then M is conjugate in $\text{Sp}(3, \mathbb{Z})$ to an element of $\bigcup_{i=0}^{10} G_i$.

Proof. Here we only prove three special cases, other cases follow with similar arguments.

1. $P(X) = (X^2 + 1)^3$. A representative of M in $U(3)$ is $\text{diag}[i, i, i]$. Thus M is conjugate in $\text{Sp}(3, \mathbb{R})$ to $J = [-1 0 \varepsilon 1]$, i.e. there exists $L \in \text{Sp}(3, \mathbb{R})$ such that $M = L^{-1}JL$. With the Iwasawa decomposition of $\text{Sp}(3, \mathbb{R})$, we can write
\[
L = \begin{bmatrix}
A & B \\
-B & A
\end{bmatrix} \begin{bmatrix}
U & S'U^{-1} \\
0 & U^{-1}
\end{bmatrix}, \quad A + Bi \in U(3).
\]
Since J commutes with $[-A B 1]$, it follows
\[
M = \begin{bmatrix}
U & S'U^{-1} \\
0 & U^{-1}
\end{bmatrix} J = \begin{bmatrix}
U & S'U^{-1} \\
0 & U^{-1}
\end{bmatrix}.
\]
This forces $U, U^{-1}, S \in \text{GL}(3, \mathbb{Z})$. Hence M is conjugate in $\text{Sp}(3, \mathbb{Z})$ to $J = [0 \varepsilon 0]$.

2. $P(X) = (X^2 - X + 1)^3$. A representative of M in $U(3)$ is $\text{diag}[\rho, \rho, \rho]$ or $\text{diag}[^{\rho^2} \rho^2, \rho^2]$. On the other hand, $Q(M) = Q(\rho)$ as fields and the class number of $Q(\rho)$ is 1 by Theorem 11.1 in Chapter 11 of [10]. Hence the number of conjugacy classes of regular elliptic elements with $X^2 - X + 1$ as minimal polynomial is 2 by [8 or 9]. Thus M is conjugate in $\text{Sp}(3, \mathbb{Z})$ to $[^1 1 0] \text{ or } \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}$.

3. $P(X) = (X^2 + 1)(X^4 + X^3 + X^2 + X + 1)$. Note that M can be represented in $U(3)$ as
\[
e[1/2, 1/2, 1/2] \text{ or } e[1/2, 1/2, 1/2] \text{ or } e[1/2, 1/2, 1/2] \text{ or } e[1/2, 1/2, 1/2].
\]
$e[a, b, c]$ stands for $[e^{nia}, e^{nib}, e^{nic}]$.

In particular, M^5 can be represented in $U(3)$ as $\text{diag}[i, 1, 1] \text{ or } [-i, 1, 1]$ and has characteristic polynomial $(X^2 + 1)(X - 1)^4$. By Lemmas 1 and 2, there exists $R \in \text{Sp}(3, \mathbb{Z})$ such that
\[
R^{-1}M^5R = \begin{bmatrix}
0 & 0 & 1 & \ast \\
\ast & E_2 & \ast & \ast \\
-1 & 0 & 0 & \ast \\
0 & 0 & 0 & E_2
\end{bmatrix} \text{ or } \begin{bmatrix}
0 & 0 & -1 & \ast \\
\ast & E_2 & \ast & \ast \\
1 & 0 & 0 & \ast \\
0 & 0 & 0 & E_2
\end{bmatrix}
\]
which is conjugate in $\text{Sp}(3, \mathbb{Z})$ to
\[
\begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix} \times E_4 \text{ or } \begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix} \times E_4.$
Hence we may assume

\[R^{-1}M^2R = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \times E_4 \quad \text{or} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \times E_4. \]

Note that the isolated fixed point of \(R^{-1}MR \) is contained in the set of fixed points of \(R^{-1}M^2R \), i.e. the set

\[Z = \begin{bmatrix} i & 0 & 0 \\ 0 & z_2 & z_{23} \\ 0 & z_{23} & z_3 \end{bmatrix}, \quad \text{Im } Z > 0. \]

Now it is easy to see that the isolated fixed point of \(R^{-1}MR \) is \((\text{SL}_2(\mathbb{Z}) \times \text{Sp}(2, \mathbb{Z})) \)-equivalent to \(Z_{07} \) and \(M \) is conjugate in \(\text{Sp}(3, \mathbb{Z}) \) to an element of \(G_{07} \). Q.E.D.

In the sections following, we shall determine conjugacy classes of regular elliptic elements of orders 9 and 7.

3. Symplectic embeddings of \(\mathbb{Q}(e^{2\pi i/9}) \) and \(\mathbb{Q}(e^{2\pi i/7}) \). For our convenience, we denote \(e^{2\pi i/9} \) by \(\xi \). Note that \(\mathbb{Q}(\xi) \) is the splitting field of the cyclotomic polynomial \(X^6 + X^3 + 1 \) and contains the total real number field \(\mathbb{Q}(\xi + \xi^{-1}) \) which is the splitting field of \(X^3 - 3X + 1 \). By a symplectic embedding of \(\mathbb{Q}(\xi) \) into \(M_6(\mathbb{Q}) \), we mean an injection from \(\mathbb{Q}(\xi) \) into \(M_6(\mathbb{Q}) \) such that \(\xi \) is mapped into a symplectic matrix \(M \) and \(\mathbb{Q}(\xi) \equiv \mathbb{Q}(M) \) as fields [9].

Lemma 3. Let \(M \) be an element of \(\text{Sp}(3, \mathbb{Z}) \) of order 9. Then \(M \) is conjugate in \(\text{Sp}(3, \mathbb{R}) \) to one of the following: \([\xi, \xi^4, \xi^7], [\xi, \xi^2, \xi^4], [\xi, \xi^5, \xi^7], [\xi^2, \xi^4, \xi^8], [\xi^2, \xi^5, \xi^8], [\xi^4, \xi^7, \xi^8], [\xi^5, \xi^7, \xi^8] \).

Proof. The minimal polynomial of \(M \) is \(X^6 + X^3 + 1 \) which can be factored into

\[
(X - \xi)(X - \xi^2)(X - \xi^4)(X - \xi^5)(X - \xi^7)(X - \xi^8) = [X^2 + (\xi + \xi^{-1})X + 1][X^2 - (\xi^2 + \xi^{-2})X + 1][X^2 - (\xi^4 + \xi^{-4})X + 1].
\]

Hence \(M \) is conjugate in \(\text{Sp}(3, \mathbb{R}) \) to

\[
\begin{bmatrix} \cos \theta & \pm \sin \theta \\ \mp \sin \theta & \cos \theta \end{bmatrix} \times \begin{bmatrix} \cos 2\theta & \pm \sin 2\theta \\ \mp \sin 2\theta & \cos 2\theta \end{bmatrix} \times \begin{bmatrix} \cos 4\theta & \pm \sin 4\theta \\ \mp \sin 4\theta & \cos 4\theta \end{bmatrix}, \quad \theta = \frac{2\pi}{9}.
\]

Note that the above eight elements of \(\text{Sp}(3, \mathbb{R}) \) are represented by the prescribed elements in \(U(3) \) as in our lemma.

Lemma 4. The number of conjugacy classes of regular elliptic elements of order 9 in \(\text{Sp}(3, \mathbb{Z}) \) is 8.

Proof. The ideal class number of \(\mathbb{Q}(\xi) \) is 1 by Theorem 11.1 of [9], hence the number of conjugacy classes of regular elliptic elements of order 9 is given by \([E_0 : N(E)] \), where

\[
E: \text{the group of units in } \mathbb{Q}(\xi),
E_0: \text{the group of units in } \mathbb{Q}(\xi + \xi^{-1}),
N(E) = \{ u\bar{u} | u \in E \},
\]

according to the argument of [8 or 9].

The group of units for cyclotomic fields is determined in Chapter 8 of [10]. Applying this to our case, we get \([E_0 : N(E)] = 8 \) when the cyclotomic field is \(\mathbb{Q}(\xi) \).
There are two conjugacy classes of elements of order 9 appearing in the isotropy group G_{02} of $Z_{02} = \text{diag}[\rho, \rho, \rho]$. Indeed, if we let $M = [\xi \beta^2 \gamma^2]$ with

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$C = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

then it is a direct verification to show that

1. M is an element of order 9.
2. M can be represented in $U(3)$ as $[\xi, \xi^4, \xi^7]$ or $[\xi^2, \xi^8, \xi^5]$.
3. $M^3 = [\xi^{-1} - \xi^2]$ has an isolated fixed point at Z_{02}.

Now we begin to look for the other six conjugacy classes of regular elliptic elements of order 9 in $\text{Sp}(3, \mathbb{Z})$.

Theorem 2. Suppose α, β, γ are distinct roots of the equation $X^3 - 3X + 1 = 0$ (or more precisely, $\alpha = 2\cos 2\pi/9, \beta = 2\cos 4\pi/9, \gamma = 2\cos 8\pi/9$),

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad \Omega = \frac{1}{3} \begin{bmatrix} -3 + \alpha + \alpha^2 & -3 + \beta + \beta^2 & -3 + \gamma + \gamma^2 \\ -1 + \alpha^2 & -1 + \beta^2 & -1 + \gamma^2 \\ 1 + \alpha & 1 + \beta & 1 + \gamma \end{bmatrix},$$

and

$$M = \begin{bmatrix} A & E \\ -E & 0 \end{bmatrix},$$

then

1. M is an element of order 9 in $\text{Sp}(3, \mathbb{Z})$ and has an isolated fixed point at

$$Z_{11} = -\frac{1}{3} A + i\Omega \left(E - \frac{1}{3} \Omega A^2 \Omega \right)^{1/2},$$

2. M is conjugate in $\text{Sp}(3, \mathbb{R})$ to $[\xi, \xi^2, \xi^3]$ of $U(3)$,
3. the centralizer of M in $\text{Sp}(3, \mathbb{Z})/\{\pm 1\}$ is a group of order 9.

Proof. (1) Since the characteristic polynomial of M is $X^6 + X^2 + 1$, it follows that M is an element of order 9 in $\text{Sp}(3, \mathbb{Z})$. Note that $\frac{1}{3}[-3 + \alpha + \alpha^2, -1 + \alpha^2, 1 + \alpha]$ is the normalized eigenvector of A corresponding to the eigenvalue α. It follows that $\Omega A \Omega = \text{diag}[\alpha, \beta, \gamma]$ and

$$\left(E - \frac{1}{3} \Omega A \Omega \right)^{1/2} = \text{diag}\left[(1 - \alpha^2/4)^{1/2}, (1 - \beta^2/4)^{1/2}, (1 - \gamma^2/4)^{1/2}\right].$$

Now it is a direct verification to show that $AZ_{11} = Z_{11} A$ and $Z_{11}^2 + AZ_{11} + E = 0$. Thus $Z_{11} = -\frac{1}{3} A + i\Omega (E - \frac{1}{3} \Omega A^2 \Omega)^{1/2}\Omega$ is a fixed point of M. But M has exactly one fixed point by Lemma 3, hence Z_{11} is the unique isolated fixed point of M.

(2) Let $R = [\alpha \beta \gamma]$. Then $R \in \text{Sp}(3, \mathbb{R})$ and

$$R^{-1}MR = \begin{bmatrix} \alpha & 1 \\ -1 & 0 \end{bmatrix} \times \begin{bmatrix} \beta & 1 \\ -1 & 0 \end{bmatrix} \times \begin{bmatrix} \gamma & 1 \\ -1 & 0 \end{bmatrix}.$$
because \(\left[\begin{array}{cc} 2 \cos \mu & 1 \\ -1 & 0 \end{array} \right] \) is conjugate in \(SL_2(\mathbb{R}) \) to \(\left[\begin{array}{cc} \cos \mu & \sin \mu \\ -\sin \mu & \cos \mu \end{array} \right] \). This proves our assertion in (2).

(3) Let \(C(M, \mathbb{Z}) \) be the centralizer of \(M \) in \(\text{Sp}(3, \mathbb{Z})/\{ \pm 1 \} \). Suppose \(\gamma \) is an element of \(C(M, \mathbb{Z}) \). Then

\[
M(\gamma(Z_{11})) = \gamma(M(Z_{11})) = \gamma(Z_{11}).
\]

Since \(Z_{11} \) is the only fixed point of \(M \), this forces \(\gamma(Z_{11}) = Z_{11} \).

Note that \(\Omega Z_{11} \Omega = R(Z_{11}) = \text{diag}[-\xi, -\xi^2, -\xi^4] \). Here \(R = [\xi_0 \, \xi_1] \) as in (2). From \(\gamma(Z_{11}) = Z_{11} \), we get

\[
R \gamma R^{-1}(\Omega Z_{11} \Omega) = \Omega Z_{11} \Omega.
\]

It follows that

\[
R \gamma R^{-1} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \times \left[\begin{array}{cc} a' & b' \\ c' & d' \end{array} \right] \times \left[\begin{array}{cc} a'' & b'' \\ c'' & d'' \end{array} \right]
\]

with

\[
\begin{align*}
-a c + b = c' a^2 - d c, & \quad ad - bc = 1, \\
-a' c^2 + b' = c' a'^2 - d c^2, & \quad a'd' - b'c' = 1, \\
-a'' c^4 + b'' = c'' a''^2 - d'' c^4, & \quad a''d'' - b''c'' = 1.
\end{align*}
\]

The general solution of \(a, b, c, d \) is given by

\[
\begin{align*}
a &= \cos \theta - \cot \frac{2\pi}{9} \sin \theta, & \quad b = -\sec \frac{2\pi}{9} \sin \theta, \\
c &= \sec \frac{2\pi}{9} \sin \theta, & \quad d = \cos \theta + \cot \frac{2\pi}{9} \sin \theta,
\end{align*}
\]

\(\theta \in \mathbb{R} \).

The characteristic polynomial of \(\left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \) is \(X^2 - 2 \cos \theta X + 1 \), hence \(2 \cos \theta \) is an algebraic integer of degree 1 or 3. On the other hand, the fact that \(\gamma \) is an element of finite order implies \(e^{i \theta} \) is a root of unity. Now we have the following cases:

Case I. If \(2 \cos \theta \) is an algebraic integer of degree 3, then the characteristic polynomial of \(\gamma \) is an irreducible polynomial of degree 6. Since \(M \) satisfies this case, the characteristic polynomial of \(\gamma \) is \(X^6 + X^3 + 1 \) or \(X^6 - X^3 + 1 \). This leads to the fact that \(\theta = 2\pi/9 \) or \(4\pi/9 \) or \(8\pi/9 \) and \(\gamma \) is one of the following elements: \(\pm M, \pm M^2, \pm M^4, \pm M^5, \pm M^7, \pm M^8 \).

Case II. If \(2 \cos \theta = \pm 1 \), then \(\gamma \) is an element of order 3. Then \(\gamma = \pm M^3 \) or \(\pm M^6 \) by a direct calculation.

Case III. If \(2 \cos \theta = \pm 2 \), then \(\gamma = \pm E_6 \).

Case IV. If \(2 \cos \theta = 0 \), then

\[
\gamma = R^{-1}\left[\begin{array}{cc} -\cot \eta & -\sec \eta \\ \sec \eta & \cot \eta \end{array} \right] \times \left[\begin{array}{cc} -\cot 2\eta & -\sec 2\eta \\ \sec 2\eta & \cot 2\eta \end{array} \right] \times \left[\begin{array}{cc} -\cot 4\eta & -\sec 4\eta \\ \sec 4\eta & \cot 4\eta \end{array} \right] R
\]

with \(\eta = 2\pi/9 \). Such a \(\gamma \) is not an integral matrix.

By the above discussion, we conclude \(C(M, \mathbb{Z}) \) is a group of order 9 generated by \(M \).
<table>
<thead>
<tr>
<th>No.</th>
<th>Representative in $U(3)$</th>
<th>Minimal polynomial</th>
<th>Order of centralizer</th>
<th>No. of conjugates in isotropy group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$e[1/2,1/2,1/2]$</td>
<td>$X^2 + 1$</td>
<td>192</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$e[1/2,1/4,5/4]$</td>
<td>$(X^2 + 1)(X^4 + 1)$</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>$e[1/2,3/4,7/4]$</td>
<td>$(X^2 + 1)(X^4 + 1)$</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>$e[1/6,5/6,9/6]$</td>
<td>$X^6 + 1$</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>$e[1/3,1/3,1/3]$</td>
<td>$X^2 - X + 1$</td>
<td>648</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>$e[2/3,1/3,1/3]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>216</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>$e[4/3,1/3,1/3]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>216</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>$e[2/3,2/3,1/3]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>216</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>$e[2/3,3/3,2/3]$</td>
<td>$X^2 + X + 1$</td>
<td>648</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>$e[5/3,2/3,3/3]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>216</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>$e[1/3,1/3,4/3]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>$e[2/3,2/3,5/3]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>$e[1/3,1/6,7/6]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>$e[2/3,1/6,7/6]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>$e[1/3,5/6,11/6]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>16</td>
<td>$e[2/3,5/6,11/6]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>$e[2/9,8/9,14/9]$</td>
<td>$X^6 + X^3 + 1$</td>
<td>9</td>
<td>72</td>
</tr>
<tr>
<td>18</td>
<td>$e[4/9,10/9,16/9]$</td>
<td>$X^6 + X^3 + 1$</td>
<td>9</td>
<td>72</td>
</tr>
<tr>
<td>19</td>
<td>$e[1/3,1/2,1/2]$</td>
<td>$(X^2 - X + 1)(X^2 + 1)$</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>$e[2/3,1/2,1/2]$</td>
<td>$(X^2 + X + 1)(X^2 + 1)$</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>$e[4/3,1/2,1/2]$</td>
<td>$(X^2 + X + 1)(X^2 + 1)$</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>$e[5/3,1/2,1/2]$</td>
<td>$(X^2 - X + 1)(X^2 + 1)$</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>$e[1/3,1/4,5/4]$</td>
<td>$(X^2 - X + 1)(X^4 + 1)$</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>24</td>
<td>$e[2/3,1/4,5/4]$</td>
<td>$(X^2 + X + 1)(X^4 + 1)$</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>$e[1/3,3/4,7/4]$</td>
<td>$(X^2 - X + 1)(X^4 + 1)$</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>$e[2/3,3/4,7/4]$</td>
<td>$(X^2 + X + 1)(X^4 + 1)$</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>27</td>
<td>$e[1/2,1/3,1/3]$</td>
<td>$(X^2 + 1)(X^2 - X + 1)$</td>
<td>144</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>$e[3/2,1/3,1/3]$</td>
<td>$(X^2 + 1)(X^2 - X + 1)$</td>
<td>144</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>$e[1/2,2/3,2/3]$</td>
<td>$(X^2 + 1)(X^2 - X + 1)$</td>
<td>144</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>$e[3/2,2/3,3/2]$</td>
<td>$(X^2 + 1)(X^2 - X + 1)$</td>
<td>144</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>$e[1/2,2/3,3/3]$</td>
<td>$(X^2 + 1)(X^2 - X + 1)$</td>
<td>144</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>$e[3/2,2/3,3/3]$</td>
<td>$(X^2 + 1)(X^2 - X + 1)$</td>
<td>144</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>$e[1/2,4/3,3/3]$</td>
<td>$(X^2 + 1)(X^2 + X^2 + 1)$</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>34</td>
<td>$e[1/2,5/3,3/2]$</td>
<td>$(X^2 + 1)(X^2 + X^2 + 1)$</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td>$e[1/2,1/4,7/6]$</td>
<td>$(X^2 + 1)(X^2 - X^2 + 1)$</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>36</td>
<td>$e[1/2,1/3,4/3]$</td>
<td>$(X^2 + 1)(X^2 - X^2 + 1)$</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>37</td>
<td>$e[1/2,5/6,11/6]$</td>
<td>$(X^2 + 1)(X^2 - X^2 + 1)$</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>38</td>
<td>$e[1/2,2/3,5/3]$</td>
<td>$(X^2 + 1)(X^2 - X^2 + 1)$</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>39</td>
<td>$e[1/2,1/4,3/4]$</td>
<td>$(X^2 + 1)(X^2 - X + 1)$</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>$e[1/2,5/4,7/4]$</td>
<td>$(X^2 + 1)(X^2 - X + 1)$</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>41</td>
<td>$e[1/2,1/3,2/3]$</td>
<td>$(X^2 + 1)(X^2 - X + 1)$</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>42</td>
<td>$e[3/2,1/3,2/3]$</td>
<td>$(X^2 + 1)(X^2 - X + 1)$</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>No.</td>
<td>Representative in $U(3)$</td>
<td>Minimal polynomial</td>
<td>Order of centralizer</td>
<td>No. of conjugates in isotropy group</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>43</td>
<td>$e[1/2, 2/5, 4/5]$</td>
<td>$(X^2 + 1)P_1(X)$</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>$e[1/2, 4/5, 8/5]$</td>
<td>$(X^2 + 1)P_1(X)$</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>$e[1/2, 6/5, 2/5]$</td>
<td>$(X^2 + 1)P_1(X)$</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>$e[1/2, 8/5, 6/5]$</td>
<td>$(X^2 + 1)P_1(X)$</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>$e[3/2, 2/5, 4/5]$</td>
<td>$(X^2 + 1)P_1(-X)$</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>$e[3/2, 4/5, 8/5]$</td>
<td>$(X^2 + 1)P_1(-X)$</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>$e[3/2, 6/5, 2/5]$</td>
<td>$(X^2 + 1)P_1(-X)$</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>$e[3/2, 8/5, 6/5]$</td>
<td>$(X^2 + 1)P_1(-X)$</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>$e[1/3, 1/4, 3/4]$</td>
<td>$(X^2 - X + 1)(X^4 + 1)$</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>52</td>
<td>$e[2/3, 1/4, 3/4]$</td>
<td>$(X^2 - X + 1)(X^4 + 1)$</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>53</td>
<td>$e[4/3, 1/4, 3/4]$</td>
<td>$(X^2 + X + 1)(X^4 + 1)$</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>54</td>
<td>$e[5/3, 1/4, 3/4]$</td>
<td>$(X^2 + X + 1)(X^4 + 1)$</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>55</td>
<td>$e[1/3, 1/3, 2/3]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>56</td>
<td>$e[2/3, 1/3, 2/3]$</td>
<td>$X^4 + X^2 + 1$</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>57</td>
<td>$e[1/3, 2/5, 4/5]$</td>
<td>$(X^2 - X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>$e[2/3, 2/5, 4/5]$</td>
<td>$(X^2 + X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>$e[4/3, 2/5, 4/5]$</td>
<td>$(X^2 + X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>$e[5/3, 2/5, 4/5]$</td>
<td>$(X^2 - X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>$e[1/3, 4/5, 8/5]$</td>
<td>$(X^2 - X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>$e[2/3, 4/5, 8/5]$</td>
<td>$(X^2 + X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>$e[4/3, 4/5, 8/5]$</td>
<td>$(X^2 + X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>$e[5/3, 4/5, 8/5]$</td>
<td>$(X^2 - X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>$e[1/3, 6/5, 2/5]$</td>
<td>$(X^2 - X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>$e[2/3, 6/5, 2/5]$</td>
<td>$(X^2 + X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>$e[4/3, 6/5, 2/5]$</td>
<td>$(X^2 + X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>$e[5/3, 6/5, 2/5]$</td>
<td>$(X^2 - X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>69</td>
<td>$e[1/3, 8/5, 6/5]$</td>
<td>$(X^2 - X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>$e[2/3, 8/5, 6/5]$</td>
<td>$(X^2 + X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>$e[4/3, 8/5, 6/5]$</td>
<td>$(X^2 + X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>$e[5/3, 8/5, 6/5]$</td>
<td>$(X^2 - X + 1)P_1(X)$</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>$e[2/9, 4/9, 8/9]$</td>
<td>$X^6 + X^3 + 1$</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>74</td>
<td>$e[4/9, 8/9, 16/9]$</td>
<td>$X^6 + X^3 + 1$</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>75</td>
<td>$e[8/9, 16/9, 14/9]$</td>
<td>$X^6 + X^3 + 1$</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>76</td>
<td>$e[10/9, 2/9, 4/9]$</td>
<td>$X^6 + X^3 + 1$</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>$e[14/9, 10/9, 2/9]$</td>
<td>$X^6 + X^3 + 1$</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>78</td>
<td>$e[16/9, 14/9, 10/9]$</td>
<td>$X^6 + X^3 + 1$</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>$e[2/7, 4/7, 6/7]$</td>
<td>$P_2(X)$</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>$e[4/7, 8/7, 12/7]$</td>
<td>$P_2(X)$</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>81</td>
<td>$e[6/7, 12/7, 4/7]$</td>
<td>$P_2(X)$</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>82</td>
<td>$e[8/7, 2/7, 10/7]$</td>
<td>$P_2(X)$</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>83</td>
<td>$e[10/7, 6/7, 2/7]$</td>
<td>$P_2(X)$</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>$e[12/7, 10/7, 8/7]$</td>
<td>$P_2(X)$</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>$e[2/7, 4/7, 8/7]$</td>
<td>$P_2(X)$</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>86</td>
<td>$e[6/7, 12/7, 10/7]$</td>
<td>$P_2(X)$</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>
With the same argument, we get the following result by simply replacing the role of \(e^{2\pi i/9} \) by \(e^{2\pi i/7} \).

Lemma 5. Let \(M \) be an element of \(\text{Sp}(3, \mathbb{Z}) \) of order 1. Then \(M \) is conjugate in \(\text{Sp}(3, \mathbb{R}) \) to one of the following (\(v = e^{2\pi i/7} \)):

\[
[v, v^2, v^3], \ [v, v^2, v^4], \ [v, v^4, v^5], \ [v, v^3, v^5], \\
[v^2, v^3, v^6], \ [v^2, v^4, v^6], \ [v^4, v^5, v^6], \ [v^3, v^5, v^6].
\]

Lemma 6. The number of conjugacy classes of regular elliptic elements of order 7 in \(\text{Sp}(3, \mathbb{Z}) \) is 8.

Theorem 3. Suppose \(\alpha, \beta, \gamma \) are distinct roots of the equation \(X^3 + X^2 - 2X + 1 \) (or more precisely, \(\alpha = 2 \cos 2\pi/7, \beta = 2 \cos 4\pi/7, \gamma = 2 \cos 6\pi/7 \)),

\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & -1
\end{bmatrix}, \quad \Omega' = \begin{bmatrix}
\alpha + \alpha^2 & \beta + \beta^2 & \gamma + \gamma^2 \\
1 + 3\alpha & 1 + 3\beta & 1 + 3\gamma \\
1 + 2\alpha & 1 + 2\beta & 1 + 2\gamma \\
1 + 3\alpha & 1 + 3\beta & 1 + 3\gamma \\
\alpha^2 & \beta^2 & \gamma^2 \\
1 + 3\alpha & 1 + 3\beta & 1 + 3\gamma
\end{bmatrix}
\]

and

\[
M = \begin{bmatrix}
B & E \\
-E & 0
\end{bmatrix}.
\]

Then

1. \(M \) is an element of order 7 in \(\text{Sp}(3, \mathbb{Z}) \) and has an isolated fixed point at

\[
Z_{12} = -\frac{1}{2}B + i\Omega'(E - \frac{1}{4}\Omega' B^2 \Omega')^{1/2} \Omega',
\]

2. \(M \) is conjugate in \(\text{Sp}(3, \mathbb{R}) \) to \([v, v^2, v^3]\),
3. the centralizer of \(M \) in \(\text{Sp}(3, \mathbb{Z})/\{\pm 1\} \) is a group of order 7 generated by \(M \).

Note that \([v, v^2, v^4]\) and \([v^3, v^6, v^5]\) are exclusive in the set of all powers of \([v, v^2, v^3]\). To find all representatives for elliptic conjugacy classes of order 7, it suffices to get a representative which is conjugate in \(\text{Sp}(3, \mathbb{R}) \) to \([v, v^2, v^4]\).

Theorem 4. Let \(B, \Omega' \) be matrices as in Theorem 3,

\[
U = \text{diag}[1, 1, -1] \quad \text{and} \quad M = \begin{bmatrix}
B & E + B \\
-(E + B)^{-1} & 0
\end{bmatrix}.
\]

Then

1. \(M \) is an element of order 7 in \(\text{Sp}(3, \mathbb{Z}) \) with isolated fixed point at

\[
Z_{13} = -\frac{1}{2}(B + E) + i\Omega' \left((E - \frac{1}{4} \Omega' B^2 \Omega')^{1/2} \Omega' (B + E) \Omega U \right) \Omega',
\]

2. \(M \) is conjugate in \(\text{Sp}(3, \mathbb{R}) \) to \([v, v^2, v^4]\),
3. the centralizer of \(M \) in \(\text{Sp}(3, \mathbb{Z})/\{\pm 1\} \) is a finite group of order 7 generated by \(M \).
Proof. Since \(\det(E + B) = 1\) and
\[
\Omega'(E + B)\Omega' = \text{diag}\left[1 + 2\cos\frac{2\pi}{7}, 1 + 2\cos\frac{4\pi}{7}, 1 + 2\cos\frac{6\pi}{7}\right]
\]
has signature +, +, −, it follows that \(M \in \text{Sp}(3, \mathbb{Z})\) and \(M\) is conjugate in \(\text{Sp}(3, \mathbb{R})\) to
\[
M' = \begin{bmatrix}
2\cos\theta & 1 \\
-1 & 0
\end{bmatrix} \times \begin{bmatrix}
2\cos\frac{2\theta}{1} & 1 \\
-1 & 0
\end{bmatrix} \times \begin{bmatrix}
2\cos\frac{3\theta}{1} & -1 \\
1 & 0
\end{bmatrix}, \quad \theta = \frac{2\pi}{7}.
\]
Indeed, if we let \(R' = \Omega'\Lambda\) with
\[
\Lambda = \text{diag}\left[(1 + 2\cos\frac{2\pi}{7})^{-1/2}, (1 + 2\cos\frac{4\pi}{7})^{-1/2}, \left(-1 - 2\cos\frac{6\pi}{7}\right)^{-1/2}\right],
\]
then \((R')^{-1}MR' = M'\). Hence (1) and (2) follow as a direct calculation. By a similar argument as in (3) of Theorem 2, we get (2).

By Theorems 1, 2, 3 and 4, we obtain the following table for conjugacy classes of regular elliptic elements in \(\text{Sp}(3, \mathbb{Z})\).

4. Application. Contributions from conjugacy classes of regular elliptic elements in \(\text{Sp}(n, \mathbb{Z})\) to the dimension formula for Siegel cusp forms of degree \(n\) and weight \(k\) [4] are given by
\[
\sum |C(M, \mathbb{Z})|^{-1} \prod_{i=1}^{n} \prod_{i<j} \left(1 - \lambda_i\lambda_j\right)^{-1}.
\]
Here the summation over all conjugacy classes of regular elliptic elements in \(\text{Sp}(n, \mathbb{Z})\). \(M\) is conjugate in \(\text{Sp}(n, \mathbb{R})\) \([A, B] = \text{diag}[\lambda_1, \lambda_2, \ldots, \lambda_n], \lambda_i\lambda_j \neq 1\) for all \(i, j\) and \(C(M, \mathbb{Z})\) is the centralizer of \(M\) in \(\text{Sp}(3, \mathbb{Z})\). Applying this formula to the case \(n = 3\), we get all contributions from 86 regular elliptic conjugacy classes in \(\text{Sp}(3, \mathbb{Z})\).

For the case \(n = 1\) and \(n = 2\), the contribution from a particular regular elliptic conjugacy class appears to be a residue of a generating function at a simple pole. For example, the contribution from the conjugacy class of regular elliptic elements of order 5 in \(\text{Sp}(2, \mathbb{Z})\) is given by
\[
K = \frac{1}{5} \left[\omega^{-6k}(1 - \omega^{-2}) + \omega^{-2k}(1 - \omega^{-4}) + \omega^{-8k}(1 - \omega^{-6}) + \omega^{-4k}(1 - \omega^{-8})\right],
\]
which is precisely the negative of the sum of residues of the function
\[
\frac{1}{(1 - T^4)(1 - T^6)(1 - T^{10})(1 - T^{12})T^{k+1}}
\]
at \(T = e^{i\theta}\) with \(\theta = \pm \pi/5, \pm 2\pi/5, \pm 3\pi/5, \pm 4\pi/5\) when \(k\) is even.

It is easy to see that the total contribution from conjugacy classes of elements of order 2 or 3 in \(\text{SL}_2(\mathbb{Z})\) is the negative of the sum of residues of the function
\[
\frac{1}{(1 - T^4)(1 - T^6)T^{k+1}}
\]
at \(T = e^{i\theta}\) with \(\theta = \pm \pi/2, \pm \pi/3, \pm 2\pi/3\) when \(k\) is even.
Note that
\[
\frac{1}{(1 - T^4)(1 - T^6)} \quad \text{and} \quad \frac{1}{(1 - T^4)(1 - T^6)(1 - T^{10})(1 - T^{12})}
\]
are well known to be generating functions of dimension formulas for modular forms of degree 1 and degree 2, respectively. It is hopeful to find a generating function of a dimension formula for modular forms of degree 3 by computing contributions from conjugacy classes of regular elliptic elements in \(\text{Sp}(3, \mathbb{Z}) \). However, we can write down explicitly the conjugacy classes of \(\text{Sp}(3, \mathbb{Z}) \) simply by using our results in this paper and reduction theory in [2, 3]. Thus a dimension formula for Siegel cusps forms of degree 3 can be obtained by the Selberg trace formula and results of [5].

REFERENCES

INSTITUTE OF MATHEMATICS, ACADEMA SINICA, NANKANG, TAIPEI, TAIWAN, REPUBLIC OF CHINA

DEPARTMENT OF MATHEMATICS, NATIONAL TSING-HUA UNIVERSITY, HSINCHU, TAIWAN, REPUBLIC OF CHINA (Current address of Chuang-Yuan Lin)

Current address (Minking Eie): Sonderforschungsbereich 170, Mathematisches Institut der Georg-August-Universität, Göttingen, Bunsenstrasse 3–5, D-3400 Göttingen, Federal Republic of Germany

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use