Invariant regions for systems of conservation laws

Author:
David Hoff

Journal:
Trans. Amer. Math. Soc. **289** (1985), 591-610

MSC:
Primary 35L65; Secondary 65M05

DOI:
https://doi.org/10.1090/S0002-9947-1985-0784005-3

MathSciNet review:
784005

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe necessary and sufficient conditions for a region in to be invariant for (Glimm) solutions of the system of conservation laws . We also make some observations about the invariance of such regions for certain finite difference approximations of solutions of systems of conservation laws.

**[1]**R. Aris and N. Amundson,*Mathematical methods in chemical engineering*, Vol. 2, Prentice-Hall, Englewood Cliffs, N.J., 1973. MR**0371184 (51:7405)****[2]**K. Chueh, C. Conley and J. Smoller,*Positively invariant regions for systems of nonlinear diffusion equations*, Indiana Univ. Math. J.**26**(1977), 373-392. MR**0430536 (55:3541)****[3]**J. Glimm,*Solutions in the large for nonlinear hyperbolic systems of equations*, Comm. Pure Appl. Math.**18**(1965), 95-105. MR**0194770 (33:2976)****[4]**David Hoff,*A finite difference scheme for a system of two conservation laws with artificial viscosity*, Math. Comp.**33**(1979), 1171-1193. MR**537964 (80k:65080)****[5]**David Hoff and Joel Smoller,*Error bounds for finite difference approximations for a class of nonlinear parabolic systems*, Math. Comp.**45**(1985). MR**790643 (86i:65051)****[6]**J. Johnson and J. Smoller,*Global solutions for an extended class of hyperbolic systems of conservation laws*, Arch. Rational Mech. Anal.**32**(1969), 169-189. MR**0236527 (38:4822)****[7]**P. Lax,*Hyperbolic systems of conservation laws*. II, Comm. Pure Appl. Math.**10**(1957), 537-566. MR**0093653 (20:176)****[8]**-,*Shock waves and entropy*, Contributions to Nonlinear Functional Analysis (E. Zarantonello, ed.), Academic Press, New York, 1971. MR**0393870 (52:14677)****[9]**T. Nishida and J. Smoller,*A class of convergent finite difference schemes for certain nonlinear parabolic systems*Comm. Pure Appl. Math.**23**(1983), 785-808. MR**720594 (85d:65050)****[10]**S. Osher,*Numerical solution of singular perturbation problems and hyperbolic systems of conservation laws*, Analytical and Numerical Approaches to Asymptotic Problems in Analysis (S. Axelsson, L. S. Frank, A. van der Sluis, eds.), North-Holland, Amsterdam, 1981. MR**605507 (83g:65098)****[11]**S. Osher and F. Solomon,*Upwind difference schemes for hyperbolic systems of conservation laws*, Math. Comp.**158**(1982), 339-374. MR**645656 (83d:65247)****[12]**F. Valentine,*Convex sets*, McGraw-Hill, New York, 1964. MR**0170264 (30:503)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35L65,
65M05

Retrieve articles in all journals with MSC: 35L65, 65M05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1985-0784005-3

Article copyright:
© Copyright 1985
American Mathematical Society