Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Translation representations for automorphic solutions of the wave equation in non-Euclidean spaces; the case of finite volume


Authors: Peter D. Lax and Ralph S. Phillips
Journal: Trans. Amer. Math. Soc. 289 (1985), 715-735
MSC: Primary 11F72; Secondary 35P25, 58G25
DOI: https://doi.org/10.1090/S0002-9947-1985-0784011-9
MathSciNet review: 784011
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Gamma $ be a discrete subgroup of automorphisms of $ {{\mathbf{H}}^n}$, with fundamental polyhedron of finite volume, finite number of sides, and $ N$ cusps. Denote by $ {\Delta _\Gamma }$ the Laplace-Beltrami operator acting on functions automorphic with respect to $ \Gamma $. We give a new short proof of the fact that $ {\Delta _\Gamma }$ has absolutely continuous spectrum of uniform multiplicity $ N$ on $ ( - \infty ,{((n - 1)/2)^2})$, plus a standard discrete spectrum. We show that this property of the spectrum is unchanged under arbitrary perturbation of the metric on a compact set. Our method avoids Eisenstein series entirely and proceeds instead by constructing explicitly a translation representation for the associated wave equation.


References [Enhancements On Off] (What's this?)

  • [1] L. D. Faddeev, Expansion in eigenfunctions of the Laplace operator in the fundamental domain of a discrete group on the Lobačevskii plane, Trudy Moscow. Math. Obšč. 17 (1967), 323-350; English transl., Trans. Moscow Math. Soc. 17 (1967), 357-386. MR 0236768 (38:5062)
  • [2] L. D. Faddeev and B. S. Pavlov. Scattering theory and automorphic functions, Proc. Steklov Inst. Math. 27 (1972), 161-193. MR 0320781 (47:9315)
  • [3] P. D. Lax and R. S. Phillips, Scattering theory for automorphic functions, Ann. of Math. Studies, no. 87, Princeton Univ. Press, Princeton, N. J., 1976. MR 0562288 (58:27768)
  • [4] -, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Funct. Anal. 46 (1982), 280-350. MR 661875 (83j:10057)
  • [5] -, Translation representations for automorphic solutions of the wave equation in non-Euclidean spaces. I. II, Comm. Pure Appl. Math. 37 (1984), 303-328, 780-813. MR 739923 (86c:58148)
  • [6] -, Scattering theory for automorphic functions, Bull. Amer. Math. Soc. 2 (1980), 261-295. MR 555264 (81c:10037)
  • [7] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87. MR 0088511 (19:531g)
  • [8] A. B. Venkov, Spectral theory of automorphic functions, Proc. Steklov Inst. Math. 153 (1981); English transl., Trudy Mat. Inst. Steklov. (1982). MR 665585 (85j:11060a)
  • [9] Y. Colin de Verdiere, Pseudo-Laplaciens. II, Ann. Inst. Fourier (Grenoble) 33 (1983), 87-113. MR 699488 (84k:58222)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F72, 35P25, 58G25

Retrieve articles in all journals with MSC: 11F72, 35P25, 58G25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0784011-9
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society