Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the proper Steenrod homotopy groups, and proper embeddings of planes into $ 3$-manifolds

Authors: Matthew G. Brin and T. L. Thickstun
Journal: Trans. Amer. Math. Soc. 289 (1985), 737-755
MSC: Primary 57N65; Secondary 57N10
MathSciNet review: 784012
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Standard algebraic invariants of proper homotopy type are discussed. These do not naturally fit into long exact sequences. Groups of proper homotopy classes of proper maps of Euclidean spaces and open annuli which do naturally form a long exact sequence are defined, and a diagram relating these groups to the standard algebraic invariants of proper homotopy type is given. The structures defined are used to compare several notions of essentiality for proper maps. Some results and examples are given for proper maps of spaces into manifolds of dimension $ 2$ and $ 3$. These results are used to add information to a theorem of Brown and Feustel about properly embedding planes in $ 3$-manifolds.

References [Enhancements On Off] (What's this?)

  • [BK] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, New York, 1972. MR 0365573 (51:1825)
  • [B1] E. M. Brown, Proper homotopy theory in simplicial complexes, Topology Conf. (Virginia Polytechnic Institute and State University; Dickman and Fletcher, eds.), Lecture Notes in Math., vol. 375, Springer-Verlag, New York, 1974, pp. 41-46. MR 0356041 (50:8513)
  • [B2] -, On the proper homotopy type of simplicial complexes, preprint.
  • [BF] E. M. Brown and C. D. Feustel, On properly embedding planes in arbitrary $ 3$-manifolds, Proc. Amer. Math. Soc. (to appear). MR 781077 (86e:57011)
  • [Ce] Z. Cěrin, On various relative proper homotopy groups, Tsukuba J. Math. 4 (1980), 177-202. MR 623435 (82g:55015)
  • [Ch] T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), 181-193. MR 0320997 (47:9530)
  • [D] A. Z. Dymov, On the behavior at infinity of the fundamental group of a homologically trivial manifold, Math. USSR-Izv. 11 (1977), 529-550.
  • [EH] D. A. Edwards and H. M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math., vol. 542, Springer-Verlag, New York, 1976. MR 0428322 (55:1347)
  • [E] D. B. A. Epstein, The degree of a map, Proc. London Math. Soc. (3) 16 (1966), 369-383. MR 0192475 (33:700)
  • [F] S. Ferry, A stable converse to the Vietoris-Smale theorem with applications to shape theory, Trans. Amer. Math. Soc. 261 (1980), 369-386. MR 580894 (82c:55018)
  • [Ge] R. Geoghegan, A note on the vanishing of $ {\lim ^1}$, J. Pure Appl. Algebra 17 (1980), 113-116; Corregendum 18 (1980), 231. MR 560787 (81i:18015a)
  • [Gr] B. I. Gray, Spaces of the same $ n$-type for all $ n$, Topology 5 (1966), 241-243. MR 0196743 (33:4929)
  • [H] J. Hempel, $ 3$-manifolds, Ann. of Math. Studies, vol. 86, Princeton Univ. Press, Princeton, N. J., 1976. MR 0415619 (54:3702)
  • [HS] P. J. Hilton and U. Stammbach, A course in homological algebra, Graduate Texts in Math., No. 4, Springer-Verlag, New York, 1971. MR 0346025 (49:10751)
  • [KO] Y. Kodama and J. Ono, On fine shape theory. I and II, Fund. Math. 100 (1979), 29-39; 108 (1980), 89-98. MR 558127 (81d:57014)
  • [L] F. Laudenbach, Topologie de la dimension trois, homotopie et isotopie, Astérisque, Vol. 12, Société Math. de France, 1974. MR 0356056 (50:8527)
  • [Mac] S. Mac Lane, Homology, Springer-Verlag, New York, 1975. MR 1344215 (96d:18001)
  • [Mas] W. S. Massey, Homology and cohomology theory, Marcel Dekker, New York, 1978. MR 0488016 (58:7594)
  • [Mih] M. L. Mihalik, Semistability at the end of a group extension, Trans. Amer. Math. Soc. 277 (1983), 307-321. MR 690054 (84d:57001)
  • [Mil1] J. Milnor, On the Steenrod homology theory, Mimeographed notes, Berkeley, 1960.
  • [Mil2] -, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. MR 0159327 (28:2544)
  • [NW] M. H. A. Newman and J. H. C. Whitehead, On the group of a certain linkage, Quart. J. Math. (Oxford) 8 (1937), 14-21.
  • [Q1] J. B. Quigley, An exact sequence from the $ n$th to the $ (n - 1)st$ fundamental group, Fund. Math. 77 (1973), 195-210. MR 0331379 (48:9712)
  • [Q2] -, Equivalence of fundamental approaching groups of movable pointed compacta, Fund. Math. 91 (1976), 73-83. MR 0413098 (54:1219)
  • [S] N. E. Steenrod, Regular cycles of compact metric spaces, Ann. of Math. (2) 41 (1940), 833-851. MR 0002544 (2:73c)
  • [W] J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. (Oxford) 6 (1935), 268-279.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N65, 57N10

Retrieve articles in all journals with MSC: 57N65, 57N10

Additional Information

Keywords: Proper map, proper homotopy type, Steenrod homotopy group, noncompact manifold
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society