Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Equivariant diffeomorphisms with simple recurrences on two-manifolds

Authors: W. de Melo, G. L. dos Reis and P. Mendes
Journal: Trans. Amer. Math. Soc. 289 (1985), 793-807
MSC: Primary 58F10; Secondary 57S15
MathSciNet review: 784014
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the class of diffeomorphisms, on compact two-dimensional manifolds, which are invariant under the action of a compact Lie group $ G$ and whose nonwandering set consists of a finite number of $ G$-orbits. We describe the modulus of stability of almost all diffeomorphisms in this class.

References [Enhancements On Off] (What's this?)

  • [B] E. Bierstone, General position of equivariant maps, Trans. Amer. Math. Soc. 234 (1977), 447-466. MR 0464287 (57:4221)
  • [Br] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [dM] W. de Melo, Moduli of stability of two-dimensional diffeomorphisms, Topology 19 (1980), 9-21. MR 559473 (81c:58047)
  • [dM-D] W. de Melo and F. Dumortier, A type of moduli for saddle connections of planar diffeomorphisms, preprint, IMPA.
  • [dM-vS] W. de Melo and S. van Strien, Characterizing diffeomorphisms with finite modality on two-dimensional manifolds (to appear).
  • [dR] G. L. dos Reis, Structural stability of equivariant vector fields on two-manifolds, Trans. Amer. Math. Soc. 283 (1984), 633-643. MR 737889 (85h:58095)
  • [F1] M. J. Field, Transversality in $ G$-manifolds, Trans. Amer. Math. Soc. 231 (1977), 429-450. MR 0451276 (56:9563)
  • [F2] -, Equivariant dynamical systems, Trans. Amer. Math. Soc. 259 (1980), 185-205. MR 561832 (82i:58037)
  • [H] P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 0171038 (30:1270)
  • [Ha] -, On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana (2) 5 (1960), 220-241. MR 0141856 (25:5253)
  • [P] J. Palis, A differentiable invariant of topological conjugacies and moduli of stability, Asterisque 51 (1978), 335-346. MR 0494283 (58:13189)
  • [P2] -, On Morse-Smale dynamical systems, Topology 8 (1969), 385-404. MR 0246316 (39:7620)
  • [P-S] J. Palis and S. Smale, Structural stability theorems, Global Analysis, Proc. Sympos. Pure Math., Vol. 14, Amer. Math. Soc., Providence, R. I., 1970. MR 0267603 (42:2505)
  • [P-dM] J. Palis and W. de Melo, Geometric theory of dynamical systems, Springer-Verlag, Berlin and New York, 1982. MR 669541 (84a:58004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F10, 57S15

Retrieve articles in all journals with MSC: 58F10, 57S15

Additional Information

Keywords: Compact Lie groups, equivariant diffeomorphisms, structural stability, modulus of stability
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society