Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Characteristic classes of transversely homogeneous foliations


Authors: Chal Benson and David B. Ellis
Journal: Trans. Amer. Math. Soc. 289 (1985), 849-859
MSC: Primary 57R32; Secondary 53C12
DOI: https://doi.org/10.1090/S0002-9947-1985-0784016-8
MathSciNet review: 784016
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The foliations studied in this paper have transverse geometry modeled on a homogeneous space $ G/H$ with transition functions given by the left action of $ G$. It is shown that the characteristic classes for such a foliation are determined by invariants of a certain flat bundle. This is used to prove that when $ G$ is semisimple, the characteristic classes are rigid under smooth deformations, extending work of Brooks, Goldman and Heitsch.


References [Enhancements On Off] (What's this?)

  • [1] D. Baker, On a class of foliations and the evaluation of their characteristic classes, Comment. Math. Helv. 53 (1978), 334-363. MR 0494144 (58:13073)
  • [2] R. Blumenthal, Transversely homogeneous foliations, Ann. Inst. Fourier (Grenoble) 29 (1979), 143-158. MR 558593 (81h:57011)
  • [3] R. Brooks and W. Goldman, The Godbillon-Vey invariant of a transversely homogeneous foliation, Trans. Amer. Math. Soc. 286 (1984), 651-664. MR 760978 (86a:53035)
  • [4] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124. MR 0024908 (9:567a)
  • [5] D. B. Fuks, Cohomology of infinite dimensional Lie algebras and characteristic classes for foliations, J. Soviet Math. 11 (1979), 922-980. MR 513337 (80g:57039)
  • [6] J. Heitsch, Deformations of secondary characteristic classes, Topology 12 (1973), 381-388. MR 0321106 (47:9639)
  • [7] -, Independent variation of secondary classes, Ann. of Math. (2) 108 (1978), 421-460. MR 512428 (80b:57022)
  • [8] -, Secondary invariants of transversely homogeneous foliations, preprint.
  • [9] S. Hurder, On the secondary classes of foliations with trivial normal bundles, Comment. Math. Helv. 56 (1981), 307-326. MR 630956 (83g:57017)
  • [10] F. W. Kamber and Ph. Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Math., vol. 493, Springer-Verlag, Berlin and New York, 1975. MR 0402773 (53:6587)
  • [11] -, $ G$-foliations and their characteristic classes, Bull. Amer. Math. Soc. 84 (1978), 1086-1124. MR 508449 (80b:57024)
  • [12] S. Kolayashi and K. Nomizu, Foundations of differential geometry, Vol. 2, Wiley, New York, 1969.
  • [13] S. Nishikawa and H. Sato, On characteristic classes of Riemannian, conformal and projective foliations, J. Math. Soc. Japan 28 (1976), 224-241. MR 0400255 (53:4090)
  • [14] H. Pittie, Characteristic classes of foliations, Pitman, London, 1976. MR 0454988 (56:13229)
  • [15] -, The secondary characteristic classes of parabolic foliations, Comment. Math. Helv. 54 (1979), 601-614. MR 552679 (82h:57022)
  • [16] W. P. Thurston, Non cobordant foliations of $ {S^3}$, Bull. Amer. Math. Soc. 78 (1972), 511-514. MR 0298692 (45:7741)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R32, 53C12

Retrieve articles in all journals with MSC: 57R32, 53C12


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0784016-8
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society