Characteristic classes of transversely homogeneous foliations

Authors:
Chal Benson and David B. Ellis

Journal:
Trans. Amer. Math. Soc. **289** (1985), 849-859

MSC:
Primary 57R32; Secondary 53C12

MathSciNet review:
784016

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The foliations studied in this paper have transverse geometry modeled on a homogeneous space with transition functions given by the left action of . It is shown that the characteristic classes for such a foliation are determined by invariants of a certain flat bundle. This is used to prove that when is semisimple, the characteristic classes are rigid under smooth deformations, extending work of Brooks, Goldman and Heitsch.

**[1]**Daniel Baker,*On a class of foliations and the evaluation of their characteristic classes*, Comment. Math. Helv.**53**(1978), no. 3, 334–363. MR**0494144****[2]**Robert A. Blumenthal,*Transversely homogeneous foliations*, Ann. Inst. Fourier (Grenoble)**29**(1979), no. 4, vii, 143–158 (English, with French summary). MR**558593****[3]**Robert Brooks and William Goldman,*The Godbillon-Vey invariant of a transversely homogeneous foliation*, Trans. Amer. Math. Soc.**286**(1984), no. 2, 651–664. MR**760978**, 10.1090/S0002-9947-1984-0760978-9**[4]**Claude Chevalley and Samuel Eilenberg,*Cohomology theory of Lie groups and Lie algebras*, Trans. Amer. Math. Soc.**63**(1948), 85–124. MR**0024908**, 10.1090/S0002-9947-1948-0024908-8**[5]**D. B. Fuks,*Cohomology of infinite-dimensional Lie algebras and characteristic classes of foliations*, Current problems in mathematics, Vol. 10 (Russian), VINITI, Moscow, 1978, pp. 179–285, 288. (errata insert) (Russian). MR**513337****[6]**James L. Heitsch,*Deformations of secondary characteristic classes*, Topology**12**(1973), 381–388. MR**0321106****[7]**James L. Heitsch,*Independent variation of secondary classes*, Ann. of Math. (2)**108**(1978), no. 3, 421–460. MR**512428**, 10.2307/1971183**[8]**-,*Secondary invariants of transversely homogeneous foliations*, preprint.**[9]**Steven Hurder,*On the secondary classes of foliations with trivial normal bundles*, Comment. Math. Helv.**56**(1981), no. 2, 307–326. MR**630956**, 10.1007/BF02566215**[10]**Franz W. Kamber and Philippe Tondeur,*Foliated bundles and characteristic classes*, Lecture Notes in Mathematics, Vol. 493, Springer-Verlag, Berlin-New York, 1975. MR**0402773****[11]**Franz W. Kamber and Philippe Tondeur,*𝐺-foliations and their characteristic classes*, Bull. Amer. Math. Soc.**84**(1978), no. 6, 1086–1124. MR**508449**, 10.1090/S0002-9904-1978-14546-7**[12]**S. Kolayashi and K. Nomizu,*Foundations of differential geometry*, Vol. 2, Wiley, New York, 1969.**[13]**Seiki Nishikawa and Hajime Sato,*On characteristic classes of Riemannian, conformal and projective foliations*, J. Math. Soc. Japan**28**(1976), no. 2, 223–241. MR**0400255****[14]**Harsh V. Pittie,*Characteristic classes of foliations*, Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1976. Research Notes in Mathematics, No. 10. MR**0454988****[15]**Harsh V. Pittie,*The secondary characteristic classes of parabolic foliations*, Comment. Math. Helv.**54**(1979), no. 4, 601–614. MR**552679**, 10.1007/BF02566295**[16]**William Thurston,*Noncobordant foliations of 𝑆³*, Bull. Amer. Math. Soc.**78**(1972), 511–514. MR**0298692**, 10.1090/S0002-9904-1972-12975-6

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57R32,
53C12

Retrieve articles in all journals with MSC: 57R32, 53C12

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1985-0784016-8

Article copyright:
© Copyright 1985
American Mathematical Society