Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On twisted lifting


Author: Yuval Z. Flicker
Journal: Trans. Amer. Math. Soc. 290 (1985), 161-178
MSC: Primary 11F70; Secondary 11R39, 11S37, 22E55
DOI: https://doi.org/10.1090/S0002-9947-1985-0787960-0
MathSciNet review: 787960
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ \sigma $ is a generator of the galois group of a finite cyclic extension $ E/F$ of local or global fields, and $ \varepsilon $ is a character of $ {C_E}( = {E^ \times }\;{\text{or}}\;{E^ \times }\backslash {{\mathbf{A}}^ \times })$ whose restriction to $ {C_F}$ has order $ n$, then the irreducible admissible or automorphic representations $ \pi $ of $ {\text{GL}}(n)$ over $ E$ with $ ^\sigma \pi \cong \pi \otimes \varepsilon $ are determined.


References [Enhancements On Off] (What's this?)

  • [A] J. Arthur, A trace formula for reductive groups. I, Duke Math. J. 45 (1978), 911-952. MR 518111 (80d:10043)
  • [ $ {\mathbf{A\prime}}$] -, On a family of distributions obtained from Eisenstein series. II: explicit formulas, Amer. J. Math. 104 (1982), 1289-1336. MR 681738 (85d:22033)
  • [BZ] J. Bernstein and A. Zelevinsky, Induced representations of reductive $ p$-adic groups, Ann. Sci. Ècole Norm. Sup. (4) 10 (1977), 441-472. MR 0579172 (58:28310)
  • [B] A. Borel, Automorphic $ L$-functions, Proc. Sympos. Pure Math., vol. 33, II, Amer. Math. Soc., Providence, R. I., 1979, pp. 27-63. MR 546608 (81m:10056)
  • [C] P. Cartier, Representations of $ p$-adic groups, Proc. Sympos. Pure Math., vol. 33, I, Amer. Math. Soc., Providence, R. I. 1979, pp. 111-157. MR 546593 (81e:22029)
  • [F] Y. Flicker, Stable and labile base change for $ U(2)$, Duke Math. J. 49 (1982), 691-729. MR 672503 (84i:22016)
  • [H] Harish-Chandra, Harmonic analysis on reductive $ p$-adic groups, (notes by G. van Dijk), Lecture Notes in Math., vol. 162, Springer-Verlag, Berlin and New York, 1970. See also: Admissible invariant distributions on reductive $ p$-adic groups, Queen's Papers in Pure and Applied Math. 48 (1978), 281-346. MR 0414797 (54:2889)
  • [JS] H. Jacquet and Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), 777-815. MR 623137 (82m:10050b)
  • [K] D. Kazhdan, On lifting, Lie Group Representations. II, Lecture Notes in Math., vol. 1041, Springer-Verlag, Berlin and New York, 1984, pp. 209-249. MR 748509 (86h:22029)
  • [Ko] R. Kottwitz, Base change transfer of unit element in Hecke algebra, Lecture at IAS, 1984.
  • [T] J. Tate, Number theoretic background, Proc. Sympos. Pure Math., vol. 33, II, Amer. Math Soc., Providence, R. I., 1979, p. 3-27. MR 546607 (80m:12009)
  • [Ti] J. Tits, Reductive groups over local fields, Proc. Sympos. Pure Math., vol. 33, I, Amer. Math. Soc., Providence, R.I., 1979, pp. 29-69. MR 546588 (80h:20064)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F70, 11R39, 11S37, 22E55

Retrieve articles in all journals with MSC: 11F70, 11R39, 11S37, 22E55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0787960-0
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society