Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On twisted lifting


Author: Yuval Z. Flicker
Journal: Trans. Amer. Math. Soc. 290 (1985), 161-178
MSC: Primary 11F70; Secondary 11R39, 11S37, 22E55
MathSciNet review: 787960
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ \sigma $ is a generator of the galois group of a finite cyclic extension $ E/F$ of local or global fields, and $ \varepsilon $ is a character of $ {C_E}( = {E^ \times }\;{\text{or}}\;{E^ \times }\backslash {{\mathbf{A}}^ \times })$ whose restriction to $ {C_F}$ has order $ n$, then the irreducible admissible or automorphic representations $ \pi $ of $ {\text{GL}}(n)$ over $ E$ with $ ^\sigma \pi \cong \pi \otimes \varepsilon $ are determined.


References [Enhancements On Off] (What's this?)

  • [A] James G. Arthur, A trace formula for reductive groups. I. Terms associated to classes in 𝐺(𝑄), Duke Math. J. 45 (1978), no. 4, 911–952. MR 518111
  • [ $ {\mathbf{A\prime}}$] James Arthur, On a family of distributions obtained from Eisenstein series. II. Explicit formulas, Amer. J. Math. 104 (1982), no. 6, 1289–1336. MR 681738, 10.2307/2374062
  • [BZ] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive 𝔭-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 0579172
  • [B] A. Borel, Automorphic 𝐿-functions, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 27–61. MR 546608
  • [C] P. Cartier, Representations of 𝑝-adic groups: a survey, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–155. MR 546593
  • [F] Yuval Z. Flicker, Stable and labile base change for 𝑈(2), Duke Math. J. 49 (1982), no. 3, 691–729. MR 672503
  • [H] Harish-Chandra, Harmonic analysis on reductive 𝑝-adic groups, Lecture Notes in Mathematics, Vol. 162, Springer-Verlag, Berlin-New York, 1970. Notes by G. van Dijk. MR 0414797
  • [JS] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4, 777–815. MR 623137, 10.2307/2374050
  • [K] David Kazhdan, On lifting, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 209–249. MR 748509, 10.1007/BFb0073149
  • [Ko] R. Kottwitz, Base change transfer of unit element in Hecke algebra, Lecture at IAS, 1984.
  • [T] J. Tate, Number theoretic background, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26. MR 546607
  • [Ti] J. Tits, Reductive groups over local fields, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F70, 11R39, 11S37, 22E55

Retrieve articles in all journals with MSC: 11F70, 11R39, 11S37, 22E55


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1985-0787960-0
Article copyright: © Copyright 1985 American Mathematical Society