Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Bifurcation from a heteroclinic solution in differential delay equations


Author: Hans-Otto Walther
Journal: Trans. Amer. Math. Soc. 290 (1985), 213-233
MSC: Primary 34K15; Secondary 58F22
MathSciNet review: 787962
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study a class of functional differential equations $ \dot x(t) = af(x(t - 1))$ with periodic nonlinearity $ f:{\mathbf{R}} \to {\mathbf{R}},0 < f$ in $ (A,0)$ and $ f < 0$ in $ (0,B),f(A) = f(0) = f(B) = 0$ . Such equations describe a state variable on a circle with one attractive rest point (given by the argument $ \xi = 0$ of $ f$) and with reaction lag $ a$ to deviations. We prove that for a certain critical value $ a = {a_0}$ there exists a heteroclinic solution going from the equilibrium solution $ t \to A$ to the equilibrium $ t \to B$. For $ a - {a_0} > 0$, this heteroclinic connection is destroyed, and periodic solutions of the second kind bifurcate. These correspond to periodic rotations on the circle.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Andronow and C. E. Chaikin, Theory of Oscillations, Princeton University Press, Princeton, N. J., 1949. English Language Edition Edited Under the Direction of Solomon Lefschetz. MR 0029027
  • [2] Nathaniel Chafee, A bifurcation problem for a functional differential equation of finitely retarded type, J. Math. Anal. Appl. 35 (1971), 312–348. MR 0277854
  • [3] Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633
  • [4] Shui-Nee Chow and John Mallet-Paret, Singularly perturbed delay-differential equations, Coupled nonlinear oscillators (Los Alamos, N. M., 1981) North-Holland Math. Stud., vol. 80, North-Holland, Amsterdam, 1983, pp. 7–12. MR 742005, 10.1016/S0304-0208(08)70968-X
  • [5] Tetsuo Furumochi, Existence of periodic solutions of one-dimensional differential-delay equations, Tôhoku Math. J. (2) 30 (1978), no. 1, 13–35. MR 0470418
  • [6] Jack K. Hale, Functional differential equations, Analytic theory of differential equations (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1970) Springer, Berlin, 1971, pp. 9–22. Lecture Notes in Mat., Vol. 183. MR 0390425
  • [7] Jack Hale, Theory of functional differential equations, 2nd ed., Springer-Verlag, New York-Heidelberg, 1977. Applied Mathematical Sciences, Vol. 3. MR 0508721
  • [8] Jack K. Hale and Krzysztof P. Rybakowski, On a gradient-like integro-differential equation, Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), no. 1-2, 77–85. MR 667126, 10.1017/S0308210500019946
  • [9] J. Mallet-Paret and R. D. Nussbaum, Global continuation and asymptotic behavior of periodic solutions of differential-delay equations, in preparation.
  • [10] L. P. Šil′nikov, The generation of a periodic motion from a trajectory which is doubly asymptotic to a saddle type equilibrium state, Mat. Sb. (N.S.) 77 (119) (1968), 461–472 (Russian). MR 0255922

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34K15, 58F22

Retrieve articles in all journals with MSC: 34K15, 58F22


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0787962-4
Keywords: Characteristic equation, saddle point property, heteroclinic solution, Poincaré map, periodic solution of the second kind
Article copyright: © Copyright 1985 American Mathematical Society