Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Unitary structures on cohomology


Authors: C. M. Patton and H. Rossi
Journal: Trans. Amer. Math. Soc. 290 (1985), 235-258
MSC: Primary 22E45; Secondary 32F10, 32L10
DOI: https://doi.org/10.1090/S0002-9947-1985-0787963-6
MathSciNet review: 787963
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {{\mathbf{C}}^{p + q}}$ be endowed with a hermitian form $ H$ of signature $ (p,q)$. Let $ {M_r}$ be the manifold of $ r$-dimensional subspaces of $ {{\mathbf{C}}^{p + q}}$ on which $ H$ is positive-definite and let $ E$ be the determinant bundle of the tautological bundle on $ {M_r}$. We show (starting from the oscillator representation of $ {\text{SU}}(p,q))$ that there is an invariant subspace of $ {H^{r(p - r)}}({M_r},\mathcal{O}(E(p + k)))$ which defines a unitary representation of $ {\text{SU}}(p,q)$. For $ W \in {M_p},\operatorname{Gr}(r,W)$ is the subvariety of $ r$-dimensional subspaces of $ W$. Integration over $ \operatorname{Gr}(r,W)$ associates to an $ r(p - r)$-cohomology class $ \alpha $, a function $ P(\alpha )$ on $ {M_p}$. We show that this map is injective and provides an intertwining operator with representations of $ {\text{SU}}(p,q)$ on spaces of holomorphic functions on Siegel space


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), No. 1711. MR 506229 (80d:53023)
  • [2] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform. I, Comm. Pure Appl. Math. 14 (1961), 187-214. MR 0157250 (28:486)
  • [3] -, Group representations on Hilbert spaces of analytic functions, Analytic Methods in Mathematical Physics (R. P. Gilbert and R. G. Newton, Eds.), Gordon and Breach, New York, 1968.
  • [4] R. J. Blattner, Quantization and representation theory, Harmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R.I., 1973. MR 0341529 (49:6277)
  • [5] R. J. Blattner and J. H. Rawnsley, Quantization of $ U(k,l)$ on $ {{\mathbf{R}}^{2(k + l)}}$, J. Funct. Anal. 50 (1983), 188-1214. MR 693228 (85c:58044)
  • [6] R. Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248. MR 0089473 (19:681d)
  • [7] J. Carmona, Representations du groupe de Heisenberg dans les espaces de $ (0,q)$-formes, Math. Ann. 208 (1973), 89-118. MR 0342643 (49:7389)
  • [8] M. G. Eastwood, R. Penrose and R. O. Wells, Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1981), 305-351. MR 603497 (83d:81052)
  • [9] P. Griffiths, Some geometric and analytic properties of homogeneous complex manifolds, Acta Math. 110 (1963), 115-156, 157-208. MR 0154300 (27:4249)
  • [10] K. Gross and R. A. Kunze, Generalized Bessel transforms and unitary representations, Harmonic Analysis and Homogeneous Spaces, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R.I., 1973. MR 0344381 (49:9120)
  • [11] R. Howe, Remarks on classical invariant theory, preprint. MR 986027 (90h:22015a)
  • [12] H. P. Jakobsen and M. Vergne, Wave and Dirac operators and representations of the conformal group, J. Funct. Anal. 24 (1977). MR 0439995 (55:12876)
  • [13] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), 1-47. MR 0463359 (57:3311)
  • [14] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-382. MR 0142696 (26:265)
  • [15] L. A. Mantini, An analog of the Penrose correspondence for representations of $ U(p,q)$ on $ {L^2}$-cohomology, Thesis, Harvard, Univ., Cambridge, Mass., 1983.
  • [16] C. Okonek, M. Schneider and H. Spindler, Vector bundles on complex projective spaces, Progress in Math., no. 3, Birkhäuser, Basel, 1980. MR 561910 (81b:14001)
  • [17] C. M. Patton, Zero rest-mass fields and the Bargmann complex structure, Complex Manifolds Techniques in Theoretical Physics (Lerner and Sommers, Eds.), Pitman, San Francisco, Calif., 1979. MR 564448 (81a:81143)
  • [18] -, On representations in cohomology over pseudo-hermitian symmetric spaces, Bull. Amer. Math. Soc., (N.S.) 5 (1981), 63-66. MR 614314 (82j:81035)
  • [19] R. Penney, Lie cohomology of representations of nilpotent Lie groups and holomorphically induced representations, Trans. Amer. Math. Soc., 261 (1980), 33-51. MR 576862 (81i:22005)
  • [20] R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976). MR 0439004 (55:11905)
  • [21] J. H. Rawnsley, W. Schmid and J. A. Wolf, Singular unitary representations and indefinite harmonic theory, J. Funct. Anal. (1983).
  • [22] J. Rosenberg, Realization of square-integrable representations of unimodular Lie groups on $ {L_2}$-cohomology spaces, Trans. Amer. Math. Soc. 261 (1980), 1-32. MR 576861 (81k:22012)
  • [23] H. Rossi and M. Vergne, Group representations on Hilbert spaces defined in terms of $ {\overline \partial _b}$-cohomology on the Silov boundary of a Siegel domain, Pacific J. Math. 65 (1976), 193-207. MR 0422517 (54:10504)
  • [24] H. Rossi, Holomorphic actions of $ \operatorname{Sp}(n,R)$ with noncompact isotropy groups, Trans. Amer. Math. Soc. 263 (1981), 207-230. MR 590420 (81k:22007)
  • [25] I. Satake, Factors of automorphy and Fock representations, Adv. in Math. 7 (1971), 83-111. MR 0348043 (50:541)
  • [26] -, Unitary representations of semi-direct products of Lie groups on $ \overline \partial $-cohomology spaces, Math. Ann. 190 (1971), 177-202.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45, 32F10, 32L10

Retrieve articles in all journals with MSC: 22E45, 32F10, 32L10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0787963-6
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society