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MINIMAL SURFACES OF CONSTANT CURVATURE IN S"

BY

ROBERT L. BRYANT1

Abstract. In this note, we study an overdetermined system of partial differential

equations whose solutions determine the minimal surfaces in S" of constant Gaus-

sian curvature. If the Gaussian curvature is positive, the solution to the global

problem was found by [C'alabi]. while the solution to the local problem was found by

[Wallach]. The case of nonpositive Gaussian curvature is more subtle and has

remained open. We prove that there are no minimal surfaces in S" of constant

negative Gaussian curvature (even locally). We also find all of the flat minimal

surfaces in S" and give necessary and sufficient conditions that a given two-torus

may be immersed minimally, conformally, and flatly into S".

0. Introduction. In this paper, we classify the connected minimal surfaces of

constant Gaussian curvature in the unit zz-sphere S"cE"+1 for all zz. It is a

classical fact (and follows easily from the structure equations) that the only examples

up to rigid motion in S3 are the open subsets of the geodesic spheres (with K = 1)

and the Clifford torus (with K = 0). In an early paper Boruvka constructed a

linearly full immersion S2 e S2m for each m > 0, where the induced metric had

K = 2/m(m + 1). Later [Calabi] showed that, up to rigid motion, these Boruvka

spheres were the only compact minimal surfaces with K = K0 > 0 in S" for any n.

[Wallach] proved that any connected piece of minimal surface with K a positive

constant in S" was a subset of a Boruvka sphere. [Kenmotsu, 1976] found all of the

flat minimal surfaces (K = 0) in S" and quite recently, [Kenmotsu, 1983] showed

that K = K0 < 0 is impossible for minimal surfaces in S4. The techniques used in

the above proofs range from harmonic analysis to rather involved calculations with

the moving frame.

On the other hand, in this paper, we take a somewhat different point of view. If

(M2, ds2) is a surface of constant Gaussian curvature K, then the minimal surfaces

in S" e E" + 1 of constant Gaussian curvature K are given locally by smooth maps /:

M -» E" + 1 which satisfy three conditions: first, (/,/> = 1; second, A/= -2/ (A

is the Laplace-Beltrami operator of ds2); and third, that / should be an isometry,

(df,df) = ds2. We study the more general class of maps /: M -> E" + 1 which only

satisfy the first two conditions. Note that this set of equations is already overde-

termined (by one equation).
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In §1, we define the fundamental operators on the space of (vector-valued) smooth

functions on M. These operators X, Y, and H form a three-dimensional Lie algebra

of differential operators. We prove some basic identities and use these to prove our

first result: If K > 0, then there is no /: M -» S" satisfying A/= -2/ (let alone

the isometry condition) unless K = (2)~l for some m > 2. We then show that if

K = (2)~l for some m > 2, then any /: M -> S" satisfying A/= -2/ must

necessarily be an isometric immersion. At this point, it would be possible to quote

[Wallach] to classify the minimal surfaces of constant positive Gauss curvature.

However, we find it simpler to prove the result directly. Of course, we get the same

result: Each such surface is an open subset of a Boruvka sphere.

In §2, we consider the case K < 0 and derive a further set of identities. We then

restrict to the case K < 0 and prove that the identities lead to a contradiction. Thus,

we conclude that there are no minimal surfaces of constant negative Gaussian

curvature in any S".

In §3, we consider the case K = 0. This case has been treated already by

[Kenmotsu, 1976] and we include this mainly for the sake of completeness. On the

other hand, our proof is considerably shorter, so there is some merit to its inclusion

in this paper.

Finally, in §4 we consider the minimal surfaces of constant Gaussian curvature in

E" and H". We prove that these minimal surfaces are necessarily totally geodesic

surfaces in E" or H".

1. The fundamental structure equations and the case K > 0. Let (M2,ds2) be an

oriented, connected surface with a smooth Riemannian metric ds2. We do not

assume that M2 is compact or that the metric is complete. We let x: &-* M be the

bundle of oriented orthonormal frames. Thus / e & is a triple / = (x; ex, ef), where

x e M and ex, e2 e TXM form an oriented orthonormal basis. The canonical

1-forms, co1, co2, on !F are the unique 1-forms satisfying

dx — efU1 + e2u2.

By the Fundamental Lemma of Riemannian Geometry, there exists a unique 1-form,

p, satisfying

du1 = — p A co2,        du2 = p A co1.

The forms ( co1, co2, p} are a coframing of & and we have the formula dp = Ku>1 A

co2, where K is a well-defined function on M called the Gaussian curvature of the

metric ds2. From now on, we shall assume that K isa constant.

It will be convenient to use a complex coframing of ^ instead of the given one.

Thus, we set co = co1 + z'co2 and rewrite the structure equations as

du = ip A co, dp = (i/2)Ku A cö,

where ds2 = co ° cö. Another useful convention will be that any function or mapping

with domain M may be regarded by pull-back as a function or mapping with

domain &. We will usually omit the pull-back notation x* and rely on context to

make the statements clear. For example, if r\ is any complex-valued 1-form on M,

the equation tj = ^4co + Bü will actually mean x*(n) = Aco + Bu for some com-

plex-valued functions A and B on !F (they will not be well defined on M).
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Let t -> M be the complex line bundle of 1-forms which are multiples of co and

let T_1->Mbe the complex line bundle of 1-forms which are multiples of co. For

m > 0, we let rm -» M (resp. r~m -* Af) be the mth power of r -* M (resp.

t"1 -* M) as a complex line bundle. Using the identification com = (cü)~m for all m,

we have a canonical pairing rm X rk -» rm + k for all m and k. If a is any section of

rm, then, on J5", we may write a = s(u)m for a unique function s on J5". One easily

computes that ds = —mips + s'u + s"ü for some unique functions s' and 5" on

&. Moreover, by differentiating this equation, we deduce that the forms i'(co)m + 1 =

a' and s"(o>)m~l = a" are well defined sections of Tm + 1 and Tm_1 respectively.

This allows us to defineoperators 9m: C°°(<rm) -r* Cx(rm+l) and 3m: C°°(T_m) -

C°°(Tm~l) by 3ma = a', 3ma = a". The reader is warned that this is the usual 3 only

when m = 0. In particular, 3m°3m_i*0. Let Im: C°°(Tm) -> C°°(Tm) be the

identity map. Set $~= © C°°(Tm) as a Z-graded vector space and define the

operators

^=8^       Y= 0 3m,       //= ©m/m.
m m m

Proposition 1.1. The operators X, Y, and H satisfy

[H,X] = X,       [H,Y]=-Y,        [X,Y] = (-K/2)H.

Moreover, A = 2(XY + YX), where A: &"-* 3" is the Laplace-Beltrami operator on

each graded piece. Finally, $ = A - KH2 commutes with X, Y, and H.

Proof. It suffices to verify each of these on graded pieces of 5". Let a e Cx(rm)

and write a = s(u)m. The first formula is obvious since Xa e Cx(rm + l) so

[H, X]a = H(Xa) - X(Ho) = (m + l)(Xa) - X(ma) = Xa.

The second formula is similar. For the third formula, let  Xa = j'(co)m+1 and

Fa = j"(co)m + 1, and write

ds' + i(m + l)ps' = (s')'o,+(s')"ü,

ds" + i(m - l)ps" = (s")% +(s")"ü.

Differentiating the equation ds + imps = s'u> + s"u> gives

-(m/2)Ksu A cö = ((*'')' -(.$')")<° A 5

so (s")' - (s')" = -m/2Ks which is clearly equivalent to [X, Y]a = (-K/2)Ho.

The formula A = 2(XY + YX) should be regarded as the definition of A, though

the reader might also compare [Simons]. The operator <b = A — KH2 is actually the

Casimir operator of the Lie algebra defined by the above relations, so it commutes

with X, Y and H. This may also be verified by direct computation.   Q.E.D.

Of course, if F is a real vector space with a Euclidean inner product ( , ):

V X V -» R, we may set Y~= V 8 R 9" and extend the operators X, Y, and H to y

in the natural way. We also have a pairing ( , ) : ^~X "f-* ST gotten by extending

the given ( , ) in the obvious fashion. An element in the mth graded piece, say a,

may be written in the form a = s(u)m, where j is a well-defined function on &

with values in Vc; we define conjugation in f by setting a = s(o>)~m. Then we have

Xa = YÖ, YÖ = Xa, Hö = - Ho.
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Proposition 1.2. Let V be an Euclidean vector space of dimension zz + 1 and let

S" e V be the unit sphere in V. Let f: M -» V be a smooth map. In order that f be an

isometric immersion, it is necessary and sufficient that (Xf, Xf)=0, (Xf,Xf) = \.

In addition, f(M)eS"ifand only if (f,f) = 1. Finally, f(M)e S" is minimal iff

A/= -2/.

Proof. Everything is clear except the last part about minimality. This calculation

may be found in [Simons] or done directly.   Q.E.D.

Proposition 1.3. Suppose that f: M -» Vsatisfies Af = -2/. Then, form > 0,

YXmf=\[(m)K 1 Xm~lf   and   XYmf
1 Mm[O- '/-

Proof. Since / e y has degree 0, Hf = 0. Thus

Af=2(XY+YX)f=-2f,        Hf=(XY-YX)f=0.

It follows that

XYf = YXf= - \f.
Since (2) — m(m - l)/2, and (2) = 0, this verifies our claim when m = 1. Now

suppose that

1
YXmf- O 1 rm — 1

'/.

We compute

YXm + 1f= YX(Xmf)= \XY +-KH\(Xmf)

-IK?)*-
-Men*-

Xmf+-KmXmf

Xmf

so the induction is complete. Since / = /, we may conjugate the first equation to get

the second.    Q.E.D.

Proposition 1.4. Suppose f: M -* V satisfies A/= -2/ and (/,/> = 1. Then,

for all m > 0,

{Xm + lf,Ymf) = {Xmf,Ym + lf) = 0    and   (Xmf\Ymf) = Am,

where Am is a constant depending only on m and K satisfying

¿o = l. 1
m VY

Proof. We are assuming that (f,f) = (X°f,Y°f) = l. Applying X and Y to

this equation gives

(*/,/> = </,y/) = o.
Thus, the above equations are verified for m = 0. Suppose we know them to be true

for m = p. Applying Y to (Xp+lf, Ypf) = 0, we get

( YXp+lf, Ypf) + ( Xp + 1f, Yp+lf) = 0
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so by Proposition 1.3, we have

(xp^f,Yp+if)=\\i-[p+iiyyxpf,Yp)=Ap,f

(by induction and the definition of Ap + f). Applying X to this equation, we get

(Xp + 2f, Yp + 1f) + (xp + 1f, XYp + 1f) = XAp + 1 = 0

or

(Xp + 2f, Yp+lf) = / Xp + 1f, \  IP + 1 )k - 11 Ypf) = 0

(by induction and conjugation). Since

(Yp+2f, Xp+lf) = ( \xpT2j\Y7TTf

we are done.    Q.E.D.

Theorem 1.5. IfK > 0 and K'1 # (2) for some m > 2, then there is no solution of

the overdetermined system (/, /) = 1, A/= —2/.

Proof. If K > 0 and K'1 # (2) for some m ^ 2, then clearly Ap < 0 for some

/i»0. However, if there were a solution f: M -* V satisfying (/,/) = 1 and

A/ = — 2/, we would have

(Xpf, xrj) = (Xpf, Ypf) - A, < 0

which is a contradiction.   Q.E.D.

We also have the following result

Theorem 1.6. Suppose that K = (2) for some m > 2 <3/i<i that f: M -* V satisfies

both </,/> = 1 and A/= -2/. T/zezz /(Af) lies linearly fully in a (2m - 1)-

dimensional vector space W e V and f: M -* s2m~2 is a minimal isometric immer-

sion. Moreover, f(M) is an open subset of the Boruvka sphere S2 —> S2m~2.

Proof. By Proposition 1.4, we see that, for r > m, we have (Xrf,Xrf) =

(Xrf, Yrf) = Ar = 0, so Xrf = 0 when r ^ zrz (of course, we also have Y'f = 0 for

r > m). Since (Xm~1f,Ym~2f) = 0 (again by Proposition 1.4) we may apply X to

conclude that <Zm—/, Fm 3/> = 0 (if zzz > 3). By induction, it follows that

(A"""1/, Yqf) = 0 for all 0 < q < m - 1. Similarly, starting with (Xm~2f, Ym~3f)

= 0 we get (Xm~2f, Yqf) = 0 for all 0 < q < m - 2. In this way, we conclude that

(Xpf, Yqf) = 0 when p ¥> q and p,q>0. In particular (Xpf, f) = 0forp> 0.

Applying X, we conclude that (Xpf, Xf) = 0 for p > 0. Again, by induction we see

that (Xpf, Xqf) = 0 when p,q>0 and p + q > 0. In particular, note that

(Xf,Xf) = 0 and (Xf,Xf) = § so by Proposition 1.2 /: Af -» F is an isometric
immersion into the unit sphere.

Now, for 0 < k < m - 1, set Xkf = {2~Tkfk(u>)k. This defines the Fc-valued

functions fk for k > 0. The formulae for the inner products (Xpf,Xqf) and

( Xpf, Xqf) now translate into the formulae

(f,fk) = (fk,fj)=0,      {fk,JJ) = hhJ-
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It follows that if we set e0 = f and 2(^2*-1 ~~ ie2k) = / for 0 < fc < /w — 1, where

the e0,...,e2m_2 are F-valued functions on &, then these (2zzz — 1) vectors are

orthonormal at every point of &■. Moreover, the equations

df = /,co + /,co,        dff = -ipff + {2A~2f2u> - you

and

dfk + kipfk fk+iu + i)(?r-ik~i
fk-iu

for k > 1, which are consequence of the definitions of / and Proposition 1.3,

together with fm = 0 can now be written in the form

d(e0,ex,...,e2m_2) = (e0,ex,...,e2m_2)^,

where the matrix of 1-forms \p is given by

*-

-'fi       0

J      -c2'¥

c2*        2/

0 c3*

0

0

0

-c3'*

37

0       0 c„,-i*     (zn-l)y

where

ß ¥
CO

, .1

and Cj. = \JAk/Ak_x for k = 2,. 1. Since the c¿ are constants, it is easy to

verify that z/t// + \p A \p — 0. Clearly d(e0 A ■ ■ ■ Ae2m_f) = 0, so the space spanned

by {e0, ...,e2m_2), say W e V, is constant on &. Clearly f(M) = e0(M) c W

and IF is the smallest subspace with this property. Finally, the fact that the entries

of \p are constant linear combinations of co1, co2, p implies that, when we write

\p = F0p + /^co1 + F2co2, then the matrices {Fx, F2, F0) span a Lie algebra isomor-

phic to âo(3). It is easy to see that this representation of So(3) into So(2m - 1) is

irreducible. It follows that f(M) is an open subset of a minimal orbit of dimension 2

of the irreducible representation of 50(3) into SO(2m - 1). It is well known that

this minimal orbit is the Boruvka sphere in 52m~2. See [Calabi],   Q.E.D.

Remark. The reader should compare [Wallach] where Theorem 1.6 is proved

under the additional hypothesis that / be an isometric immersion.

2. The case K < 0. Throughout this section, we assume K < 0. It follows that

A > 0 for all p. We also assume that /: M -» F satisfies (/, /> = 1 and A/ = - 2/.

For p > 0, we define Xpf and Y"f as before, but we set X~pf = (

p>0).

l)pA-plYpf (for

Proposition 2.1. For every m > 0 and for all p, Xm(Xpf) = Xm+Pf.
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Proof. If p > 0, this is obvious. Induction reduces us to the case p < 0 and

m = 1. We compute

X(X~qf) = (-l)"A-'XYqf= (-lyA-^j^K- 1 Yq~lf

= (-!)"  lA-q\fYq'lf=Xl-qf

if q> 0.    Q.E.D.

Proposition 2.2. For every m > 2, there exists a polynomial in s, Rm(s), of degree

at most m — 2 in s, with coefficients in Cao(rm), and satisfying

(Xp + ">f,X-pf)=(-l)pRm(p)

for all p. Moreover

(Xpf,X~pf) =(-!)",        (Xp + 1f,X-pf) = 0

for all p.

Proof. The last two statements are just Proposition 1.4 restated. To get the first

statement, we apply A''"— to the equation (Xp+1f,X~pf) = 0 and use the Leibnitz

rule to get

l m —  \ \ /_i...   _í_j_.xa£ [m z })(xp+rf, xm-(p+ry)=o.
r=l \ T '

This equation says that the (m — l)th difference sequence of the sequence

{(-l)p(Xp + mf,X-pf)\p eZ) vanishes identically. This is well known to be

equivalent to the statement that this sequence is polynomial in p of degree at most

m - 2.    Q.E.D.

Theorem 2.3. For K < 0 there is no solution to the over-determined system

A/ = — 2/, (/, /) = 1 for mapsf: M -» F. It follows that S" has no (local) minimal

surfaces of constant negative Gaussian curvature.

Proof. For p > 0, define Zp = Xpf/ JÂ~p. Then we compute from Proposition

2.2 that for p > 0

(Z,,Z,}.*;1, (Zp+1,Zp) = 0

and, when m > 2

(Zp + m,Zp)= \jAp/Ap + mRm(p).

The last equation is gotten as follows:

(Zp+m, Zp) = -==={xp^f, X?f) =        *_ (X'+"ft Y»f)
yAp + mAp yAp + mAp

- (-l)p(Xp^f, X-»f) = A-p- Rm(p)       {m > 2).A v      '   N y '        J '       \    A
■^p + m y    Ap

Since K < 0, we easily compute that

yW™ < cJPn
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for some constant Cm (which depends on K). Since Rm(p) has /»-degree at most

m — 2 it follows that for any m > 0

pointwise on  !F.  Let  y0 e &  be fixed and define the vectors Wk  in Fc   by

zk(y0) = wk(ioSyo)k.

Let r > zz be any integer and let e > 0 be small. By the above argument, there

exists a p so large that

\{Wp + k,Wp7,)\<e

for all k # /, 0 < k, I < r, while (Wp + k, Wp + k) = 1 for all k. Taking e sufficiently

small, this implies that the r + 1 vectors ( W ,..., Wp + r) are linearly independent in

Fc (which has dimension zz + 1). Since r > n, this is impossible.   Q.E.D.

3. The case K = 0. In the case K = 0, we may introduce considerable simplifica-

tions. In the first place, we may choose a framing of Af along which p = 0. In other

words, we may introduce (at least locally) a complex function z: M -» C so that

ds2 = dz ° dz. Thus, we may take co = dz and p = 0. The operator X is just 3/3z

and Y is just 3/3z. The sequence [Am] becomes Am = 2~m. The formula for Zm

becomes

Zm = 2m/2(df/dzm)(dz)m       (m>0).

Moreover, the formulas

(Zm,Zm) ml,        (Zm+l,Zm)mO,        (Zp + m,Zp) = 2^2Rm(p)(dz)m

(for m > 0) still hold, where, now, R(p) is a polynomial in p of degree at most

m — 2. Because of the triangle inequality we must have 2m/2\Rm(p)\ < 1 for all p

and m. This clearly implies that Rm(p) is of degree 0 in p. Thus, the formula

becomes

{Zp + m,Zp) = 2"/1Rm(dz)m,

where R is a function of z (and z) alone. Recalling Proposition 2.2, we see that this

implies that

(Xp + >"f,X-pf)=(-l)pRm(dz)m

for all p e Z. If m is odd, say m = 2q+ 1, then setting p = —q and p = —q—1,

we get

{X«^f,X<>f)= (-ir>R2q+l(dzf+\

(xqf,Xq^f)=(-iy+lR2q+f(dzf+l

so it follows that R2q+X = 0 for all q > 0. Thus (Xp + mf, X~pf) = 0 for zzz odd.

For m even, differentiating

{Xp + 2qf,X-pf)=(-l)pR2q(dz)2"
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with X and then with Y and using the result for m odd, we see that R2q must be a

constant independent of z (or z). Let us define

Hpq = Vp+qv2(dpf/dzp,dqf/dzq) = JÇP.

Then, for every m > 0, the (m + 1) X (m + 1) Hermitian matrix obtained by

considering {Hpq\0 < p,q < m) is a positive semidefinite Hermitian matrix of

constants. Since the akf/'azk all lie in a finite-dimensional vector space, it follows

that there must be an integer r > 0 so that [Hpq\0 </>,<, < r) is positive definite

while [Hp-\0 </?,z¡r < r + 1} has zero determinant. It follows that the vectors

{f, af/az, •••» orf/ozr} are linearly independent at all points of M while there must

exist a relation of the form

or+l/ r "Ákf
2(r+wLJL +   £ 1knBkl± = 0

a,r+l *-' a-A: 'dz t_0 dz

where the Bk are smooth functions on M. Taking the inner product of this equation

with 2k/2dkf/dzk gives

r

Hr+i,k+ LBJHfk = 0.
7 = 0

Thus (5°, B1,..., Br, 1) is a zero eigenvector of the matrix [Hpq\0 < p, q < r + 1}.

Since the matrix has rank r by definition (and has constant entries), it follows that

the Bj are constants. Obviously, this is the only nontrivial linear relation on

{/,...,3,+1//3z,+1}. Now, since A/= -2/= 432//3z3z, and since / is real, we

may apply the operator 2(r+1)/23r+1/3zr+1 to the above equation and conjugate to

get

2(r+W$o¥H +  ¿ 2k/2(-l)r+1~kBr+1-k^ +(-l)r+1f= 0
3zr+1      k=x dzk

It follows that B° * 0 and that Bk = (-l)r+1-kBr+1~k/B°. Setting k = 0 gives

Ä°5° = ( —l)r+1.    Thus   r   is   odd.   Our   equation   now   simplifies   to   Bk =
(-l)kB°Br+1~k.

For convenience, we set w = z/ y/2 . Then we get Hp-= (opf/dwp', aqf/awq) and

^L+ÍBk^ = 0.
dwr+l     k=0     awk

Now Hpq = 0 if p — q is odd. It follows that the even derivatives

{/. o2f/dw2,... ,dr+1f/dr+1} are orthogonal to all of the odd derivatives

[df/dw,... ,drf/dwr). From this, it immediately follows that Bk = 0 when k is

odd. If we replace w by Xw, where Xr+1 = B0, then we see that B0 becomes 1. Thus,

we assume B0 = 1 from now on. We have

K+l/- ar-l/ ¡,2/

^ + /r-<^+...+*Ä + /=o.
*\ r— 1 r, 2 J

w3wr+1 3tvr- 3-'2

Let   A ç C be the set of roots of xr+1 + Br~lxrl + ■■■ +B2x2 + 1 = 0.  It

follows from the facts that B2k + l = 0 and B2k = 5r+1"2*, that the set A does not
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contain 0 g C, and that, if À e A, then -\ and Ä"1 must also belong to A. Let

{Xtt|l<a<5} = A. The above equation plus the reality condition / = / implies

that

/(«>)= LpaßeKw+h*,
a,ß

where paß = pß5 is a Fc-valued polynomial in w and iv of degree less than or equal

to the multiplicity of Xa plus the multiplicity of Xß. Obviously, we may now regard

/ as being defined on all of C by this formula. Applying the relation A/ = - 2/ =

232//3h'3h', we see that paß = 0 unless XJ<ß = -1. Moreover, since (/, /> = 1, in

particular, it follows that (/, /) is bounded. It is not hard to show that this implies

that paß = 0 unless Re(A0iv + Xß\v) = 0 for all w e C. This can only happen if

Xß = —Xa. Combined with the above result, we see that paß = 0 unless XaXa = 1.

Let { Xf,..., Xk} e A be such that we may write

k

f(w)= £ PjexJw-~xi* -l-^.erV-'V

7 = 1

where A, # + Ay when i =£ j and the pj are nonzero polynomials in w and w. The

independence of the exponentials and the boundedness of f(w) then again imply

that the p¡ are bounded polynomials and hence are constant vectors in Vc. In fact,

the 2A:2 numbers (A, + \f, -(A, + A;)|l < i, j < k) U {A, - A;|z # /} are all

nonzero and distinct (as is easily seen since the + Ay are distinct points on the unit

circle). If we expand (/, /> = 1 and use the independence of the exponentials we

see immediately that (p¡,Pj) = 0 for all i, j, that (p¡,Pj) = 0 for all i =fj, and

that

k

E2(P,^ = 1.
7 = 1

Conversely, if ( A,| 1 < z < /c} are complex numbers of unit norm so that ( + A¿| 1 <

i 5g k} is a set of 2 k distinct numbers, and Pf,...,pk e Vc satisfy the above three

conditions, then f(w) as defined above gives a map /: C -» S" satisfying (/, /> = 1

and A/= —2/ (where zis2 = 2dw°dw). Obviously / is linearly full in a real

2 ̂ -dimensional subspace of F. Thus /(C) lies linearly fully in an odd-dimensional

sphere. We record this as

Theorem 3.1. Let D be a small disk about 0 e C and let f: D -» S" e V be a

smooth mapping satisfying A/ = — 2/, where we compute the Laplacian with respect to

a metric ds2 = 2dw ° dw where w is a linear complex coordinate on C. Assume that

f(D)e V does not lie in any proper subspace of V. Then

(1) n is odd,

(2) f extends uniquely to all of C as a map satisfying A/ = — 2 fand (/, /) = 1,

(3) after rotating w if necessary, f can be written in the form

(« + l)/2

f(w)=     £    pkek"w-x"w +^-x*M,+^il>,

fe-1
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where the { ±A,|1 < i < (zz + l)/2} are zz + 1 distinct complex numbers of norm 1

and the pke Vc are nonzero vectors satisfying

(n + l)/2 x

(pk,Pj) = °,      (Pk,Pj) = 0'fJ * k     and E       (Pk,Pk)=j-
k = l

Moreover,  the pairs (pk,Xk)  are unique up to permutations and by replacing

(Pk,*k)by(Pk>-*k)-

Conversely, any f as described in (3) satisfies (/,/) = 1 and A/= —2/.

Remark. The reader will note the similarities with Calabi's result for minimal

surfaces of constant positive Gauss curvature. There, of course, zz turns out to be

even.

Corollary 3.2. Keeping the same notations as in Theorem 3.1, the map f: C —> S"

is a minimal immersion if and only if T.k X\{pk, pk) = 0.

Proof. One immediately computes that

(n + D/2

(df,df) = 2dwodw+2    ¿Z    X\{Pk,pk)(dwf + X2k(pk,pk)(dw)\
k=\

Now apply Proposition 1.2.    Q.E.D.

Remarks. Combining Theorem 3.1 and Corollary 3.2, it is possible to show that

every minimal immersion /: R2 -» S2m~l satisfying (df,df) = \(dx2 + dy2) can

be rotated in s2m~l to the normal form / = (fl,... ,f2m) where, for 1 < k < m,

f2k'1(x, y) = r^cos^cos^ + ysin0k),

f2k(x, y) = r^sin^cos^ + j'sinf^),

where (rk,6k) are m real numbers satisfying rk > 0, Oj ̂  6k modw for j # k,

r2 + ■ ■ ■ +r2 = 1, and e2,9lr2 + • • • +c?2'*mr^ = 0. Moreover, these constants are

almost uniquely determined: One can permute the pairs (rk,0k) and displace the 6k

by the same angle 0o, i.e. {(rk,0k)} and {(rk,0k + 0f)} give the same minimal

surface in S2m—. It follows that the linearly full minimal isometric immersions /:

R2 -» s^m-i forrn a(2m - 4)-dimensional family after reducing mod the isometries

in the domain and range.

Our second remark concerns the image /(R2) e s2"1— for such an /. From our

formula above, we see that f(x, y) = f(x', y') iff

(x' - x) cos0k +(y'— y) sin6k = 0   mod2w

for k = 1,..., m. We define

Af= {(x, y) e R2\xcos6k + ysindk = 0mod2w, 1 < k < m).

Clearly Kf ç R2 is a discrete lattice and /(R2) is a 1-1 immersion of R2/^/ mto

S2m_1. If Aj has rank 2, then R2/Af is imbedded as a minimal flat torus in 5       .

It is of some interest to determine which tori R2/A (where A has rank 2 and is

discrete) admit minimal flat imbeddings into some 52m_1. We can answer this

question as follows: Let A* = {(a, b) e R2\ax + by = 0 mod 2w for all (x, y) e A}.
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Then A* c R2 is a rank 2, discrete lattice in R2. The following proposition now

follows easily.

Proposition 3.3. Let A e R2 be a rank 2, discrete lattice. For each r > 0, let

H(A,r) be the convex hull of the (possibly empty) set

c(A,r)= {(a + ib)2\a2 + b2 = r2 and (a, b) e A*} à C.

Then R2/A admits a minimal immersion f: R2/A -» S2m — for some m with

(df, df) = r2/2(dx2 + dy2) iff 0 e H(A, r). If 0 is on the boundary of //(A, r),
then m = 2. If 0 is in the interior of H(A,r) then m is at most the cardinality of

c(A,r).

Remark. It is possible to show that 0 e H(A,r) for some r if and only if A* is

generated as a lattice by two periods a,|3e C with the property that Re(a/ß) and

aä/ßß are both rational. In this case 0 e H(A,r¡) for an infinite sequence of r, > 0

and the cardinality of c(A, rf) can be made arbitrarily large. On the other hand, the

generic A* will have H(A,r) either empty or a single point for all r > 0. Thus, the

generic torus R2/A cannot be minimally, flatly, and conformally immersed in any

S".

Remark. The results of this section, under the additional hypothesis that / be an

isometric immersion are essentially due to [Kenmotsu, 1976].

4. Generalizations to other ambient sectional curvatures. The zz-sphere is the

standard model for zz-manifolds of constant sectional curvature c = 1. In this

section, we sketch how the classification can be extended to other constant sectional

curvatures. By scaling, we are reduced to considering the three cases where the

sectional curvature c is either 1, 0, or -1. We have already treated the case c = 1, so

now we consider c = 0 or — 1. It is well known that if m is a minimal surface in a

space of constant sectional curvature c, then K < c (where K is the Gauss curvature

of M) with equality holding iff M is totally geodesic in the ambient space.

The following proposition is due to [Pint]. We give a simple proof based on some

results of E. Calabi which are reported on in [Lawson, Chapter IV].

Proposition 4.1. Let M2 e E" be a connected minimal surface of constant

Gaussian curvature K. Then K = 0 and M is an open subset of a 2-plane in E".

Proof. We quote [Lawson, Theorem 11, p. 157] and maintain his notation, If the

induced metric on Af is written locally in isothermal form ds2 = 2Fdz ° dz, then the

assumption that ds2 has Gauss curvature K is equivalent to the equation

32(logF)/3z3z = -KF. Assume that K < 0. It follows that the sequence {Fj) is

given by Fj = CjFJ(j+1)/2, where the Cj are constants satisfying c0 = 1, cx = 1 and

the recursion formula

ck + xCk-x/c2k = (-K)k(k + l)/2    for* > 1.

Clearly F¡ never vanishes, so K < 0 is impossible. Since c = 0 in this case, we must

have K = 0 and M e E" is totally geodesic.    Q.E.D.



MINIMAL SURFACES OF CONSTANT curvature IN S" 271

(m > 0),

We now turn to the more interesting case where c = — 1. Let F be an (zz + 1)-

dimensional real vector space endowed with an inner product of type (zz, 1). Let H"

be one of the two components of the hyperboloid of 2 sheets given by (x, x} = — 1.

Then H" is the classical model for a space of constant sectional curvature -1.

Theorem 4.2. Suppose that M2 e H" is a connected minimal surface of constant

Gaussian curvature K. Then K = -1 and M2 is totally geodesic in H".

Proof. It suffices to prove that K> — 1 since c = — 1. Note that the inclusion

map /: Af2 -> H" e V satisfies (/, /> = -1 and A/ = 2/ (where the Laplacian is

computed with respect to the induced metric). Following the calculations in §§1 and

2, we easily establish the formulae

YXmf=Ul +(m\K  Xm-lemf

XYmf=]r\l +(2)*  ym_1/

(Xm+lf, Ymf) = (Xmf, Ym+1f) = 0       (m>0),

(X"'f,Ymf) = Bm       (m>0),

where B0 = -1 and Bm = - \\1 + (2n)K]Bm_x for m > 0. Now assume that

K < -1. Then Bm> 0 for all m > 0. Setting X-"f = (- l)p + lBf1Ypf as before, we

derive identities similar to those of §2. Again, we define Zp = Xpf/ Jß^ for p > 0

and we set Z0 = /. The same estimate ■^'p^o0(Zp + m,Zp) = 0 for m > 0 (pointwise

on Af) continues to hold while (Z , Zp) = +1. Thus, we again derive a contradic-

tion from the finite dimensionality of V. Hence K < — 1 is impossible.    Q.E.D.

Remark. With more care, it is possible to show that if ( M, ds2 ) is any connected

Riemannian surface of constant Gauss curvature K and F is as above, then the

system of equations (/,/)= -1, A/ = 2/ for maps /: M -* V has no solutions at

all unless K = 0 or — 1. When K = -1, the only such / are isometric imbeddings

and hence are totally geodesic. When K = 0, the situation is more complicated with

a solution space like that for the c = 1 case treated by Theorem 3.1.

Finally, we remark that [Kenmotsu, 1983] has given a proof of Theorem 4.2 in the

case zz = 4.
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