Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Absolutely continuous invariant measures that are maximal


Authors: W. Byers and A. Boyarsky
Journal: Trans. Amer. Math. Soc. 290 (1985), 303-314
MSC: Primary 58F08; Secondary 58F11
DOI: https://doi.org/10.1090/S0002-9947-1985-0787967-3
MathSciNet review: 787967
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a certain irreducible $ 0{\text{-}}1$ matrix and let $ \tau $ denote the family of piecewise linear Markov maps on $ [0,1]$ which are consistent with $ A$. The main result of this paper characterizes those maps in $ \tau $ whose (unique) absolutely continuous invariant measure is maximal, and proves that for "most" of the maps that are consistent with $ A$, the absolutely continuous invariant measure is not maximal.


References [Enhancements On Off] (What's this?)

  • [1] P. Collet and J. P. Eckmann, Iterated maps on the interval as dynamical systems, Birkhäuser, Boston, Mass., 1980. MR 2541754
  • [2] T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. MR 0385028 (52:5898)
  • [3] R. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459-467.
  • [4] A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 183 (1973), 481-485. MR 0335758 (49:538)
  • [5] R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys. 69 (1979), 1-17. MR 547523 (81e:28010)
  • [6] M. Misieurewicz, Absolutely continuous measures for certain maps of an interval, Publ. Math. I.H.E.S., Paris, 1980.
  • [7] G. Pianigiani, Absolutely continuous invariant measures for the process $ {X_{n + 1}} = A{X_n}(1 - {X_n})$, Boll. Un. Mat. Ital. 16A (1979), 374-378. MR 541777 (80h:28016)
  • [8] R. L. Adler, $ F$-expansions revisited, Lectures Notes in Math., vol. 318, Springer, Berlin and New York, 1973, pp. 1-5. MR 0389825 (52:10655)
  • [9] M. Misiurewicz, Invariant measures for continuous transformation of $ [0,1]$ with zero topological entropy, Lecture Notes in Math., vol. 729, Springer, Berlin and New York, 1980, pp. 144-152. MR 550417 (81a:28017)
  • [10] F. Hofbauer, $ \beta $-shifts have unique maximal measure, Monatsh. Math. 85 (1978), 189-198. MR 0492180 (58:11326)
  • [11] -, Maximal measures for piecewise monotonically increasing functions on $ [0,1]$, Lecture Notes in Math., vol. 729, Springer, Berlin and New York, 1979, pp. 66-77.
  • [12] M. Misiurewicz, Absolutely continuous measures for certain Markov maps of an interval, I.H.E.S., Paris, 1979.
  • [13] R. L. Adler, A. C. Konheim and W. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 0175106 (30:5291)
  • [14] A. Boyarsky and M. Scarowsky, On a class of transformations which have unique absolutely continuous invariant measures, Trans. Amer. Math. Soc. 255 (1979), 243-262. MR 542879 (80i:28033)
  • [15] N. Friedman and A. Boyarsky, Matrices and eigenfunctions induced by Markov maps, Linear Algebra Appl. 38 (1981), 141-147. MR 636032 (83e:58072a)
  • [16] A. Boyarsky and G. Haddad, All invariant densities of piecewise linear Markov maps are piecewise constant, Adv. Appl. Math. 2 (1981), 284-289. MR 626863 (82i:58041)
  • [17] E. Senenta, Non-negative matrices and Markov chains, 2nd ed., Springer-Verlag, Berlin and New York, 1981.
  • [18] P. Billingsley, Ergodic theory and information, Wiley, New York, 1965. MR 0192027 (33:254)
  • [19] P. Walters, An introduction to ergodic theory, Springer-Verlag, Berlin and New York, 1982. MR 648108 (84e:28017)
  • [20] P. Lancaster, Theory of matrices, Academic Press, New York, 1969. MR 0245579 (39:6885)
  • [21] Z. Nitecki, Differentiate dynamics, M.I.T. Press, Cambridge, Mass., 1971. MR 0649788 (58:31210)
  • [22] W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1969), 55-66. MR 0161372 (28:4579)
  • [23] -, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368-378. MR 0197683 (33:5846)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F08, 58F11

Retrieve articles in all journals with MSC: 58F08, 58F11


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0787967-3
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society