Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Existence of weak solutions to stochastic differential equations in the plane with continuous coefficients


Author: J. Yeh
Journal: Trans. Amer. Math. Soc. 290 (1985), 345-361
MSC: Primary 60H10
MathSciNet review: 787969
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ B$ be a $ 2$-parameter Brownian motion on $ {\mathbf{R}}_ + ^2$. Consider the nonMarkovian stochastic differential system in $ 2$-parameter

$\displaystyle \left\{ {\begin{array}{*{20}{c}} {dX(z) = \alpha (z,X)\;dB(z) + \... ...text{for}}\;z \in \partial {\mathbf{R}}_ + ^2,} \hfill \\ \end{array} } \right.$

i.e.,

$\displaystyle \left\{ {\begin{array}{*{20}{c}} {X(z) = X(0) + \int_{{R_z}} {\al... ...}}_ + ^2,} \hfill \\ {x(0) = \xi ,} \hfill & {} \hfill \\ \end{array} } \right.$

where $ {R_z} = [0,s] \times [0,t]$ for $ z = (s,t) \in {\mathbf{R}}_ + ^2$. An existence theorem for weak solutions of the system is proved in this paper. Under the assumption that $ \alpha $ and $ \beta $ satisfy a continuity condition and a growth condition and $ {\mathbf{E}}[{\xi ^6}] < \infty $, it is shown that there exist a $ 2$-parameter stochastic process $ X$ and a $ 2$-parameter Brownian motion $ B$ on some probability space satisfying the stochastic integral equation above, with $ X(0)$ having the same probability distribution as $ \xi $.

References [Enhancements On Off] (What's this?)

  • [1] Renzo Cairoli, Sur une équation différentielle stochastique, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1739–A1742 (French). MR 0301796 (46 #951)
  • [2] R. Cairoli and John B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111–183. MR 0420845 (54 #8857)
  • [3] K. L. Chung and R. J. Williams, Introduction to stochastic integration, 2nd ed., Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1102676 (92d:60057)
  • [4] C. Doléans-Dade and P. A. Meyer, Équations différentielles stochastiques, Séminaire de Probabilités, XI (Univ. Strasbourg, Strasbourg, 1975/1976), Springer, Berlin, 1977, pp. 376–382. Lecture Notes in Math., Vol. 581 (French). MR 0451403 (56 #9689)
  • [5] Xavier Guyon and Bernard Prum, Variations-produit et formule de Itô pour les semi-martingales représentables à deux paramètres, Z. Wahrsch. Verw. Gebiete 56 (1981), no. 3, 361–397 (French). MR 621118 (82i:60090), http://dx.doi.org/10.1007/BF00536179
  • [6] Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252 (90m:60069)
  • [7] J. Jacod and J. Memin, Weak and strong solutions of stochastic differential equations, Stochastic Integrals, Lecture Notes in Math., vol. 851, Springer-Verlag, Berlin and New York, 1980.
  • [8] R. S. Liptser and A. N. Shiryaev, Statistics of stochastic processes, Nauka, Moscow, 1974. (Russian)
  • [9] Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288 (34 #5119)
  • [10] J. Reid, Dissertation, University of California, Irvine, Cal., 1981.
  • [11] J. Reid, Estimate on moments of the solutions to stochastic differential equations in the plane, Ann. Probab. 11 (1983), no. 3, 656–668. MR 704552 (84i:60078)
  • [12] A. V. Skorokhod, Investigations on the theory of stochastic processes, Kiev University, Kiev, 1961. (Russian)
  • [13] Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498 (81f:60108)
  • [14] Constantin Tudor, A theorem concerning the existence of the weak solution of the stochastic equation with continuous coefficients in the plane, Rev. Roumaine Math. Pures Appl. 22 (1977), no. 9, 1303–1308. MR 0518000 (58 #24551)
  • [15] Constantin Tudor, On the existence and the uniqueness of solutions to stochastic integral equations with two-dimensional time parameter, Rev. Roumaine Math. Pures Appl. 24 (1979), no. 5, 817–827. MR 546400 (81e:60070)
  • [16] S. Watanabe, Stochastic differential equations, Sangyo-Tosho, Tokyo, 1979. (Japanese)
  • [17] Eugene Wong and Moshe Zakai, Martingales and stochastic integrals for processes with a multi-dimensional parameter, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 29 (1974), 109–122. MR 0370758 (51 #6983)
  • [18] J. Yeh, Existence of strong solutions for stochastic differential equations in the plane, Pacific J. Math. 97 (1981), no. 1, 217–247. MR 638191 (83c:60085)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60H10

Retrieve articles in all journals with MSC: 60H10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1985-0787969-7
PII: S 0002-9947(1985)0787969-7
Keywords: Brownian sheet, stochastic differential equations, tightness, Kolmogorov condition
Article copyright: © Copyright 1985 American Mathematical Society