Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The dual Weierstrass-Laguerre transform


Author: Deborah Tepper Haimo
Journal: Trans. Amer. Math. Soc. 290 (1985), 597-613
MSC: Primary 44A15; Secondary 35C15
DOI: https://doi.org/10.1090/S0002-9947-1985-0792814-X
MathSciNet review: 792814
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An inversion algorithm is derived for the dual Weierstrass-Laguerre transform $ \int_0^\infty {{g_\alpha }(x,y;1)\varphi (y){y^\alpha }{e^{ - y}}/(\alpha + 1)dy} $, where the function $ {g_\alpha }(x,y,t)$ is associated with the source solution of the Laguerre differential heat equation $ x{u_{xx}}(x,t) = (\alpha + 1 - x){u_x}(x,t) = {u_t}(x,t)$. Correspondingly, sufficient conditions are established for a function to be represented by a Weierstrass-Laguerre Stieltjes transform $ \int_0^\infty {{g_\alpha }(x,y;1)\;d\beta (y)} $ of a nondecreasing function $ \beta $.


References [Enhancements On Off] (What's this?)

  • [1] Frank M. Cholewinski and Deborah Tepper Haimo, The Weierstrass-Hankel convolution transform, J. Analyse Math. 17 (1966), 1-58. MR 0215021 (35:5866)
  • [2] -, Laguerre temperatures, Proceedings of the Conference on Orthogonal Expansions and their Continuous Analogues, Southern Illinois Univ. Press, Carbondale, 1968, pp. 127-226, MR 0230581 (37:6141)
  • [3] -, The Poisson-Laguerre transform, Bull. Amer. Math. Soc. 74 (1968), 137-139. MR 0218844 (36:1928)
  • [4] -, The Weierstrass-Laguerre transform, J. Math. Anal. Appl. 23 (1968), 41-57. MR 0227701 (37:3285)
  • [5] -, The dual Poisson-Laguerre transform, Trans. Amer. Math. Soc. 144 (1969), 271-300. MR 0252975 (40:6190)
  • [6] -, Expansions in terms of Laguerre heat polynomials and their temperature transforms, J. Analyse Math. 24 (1971), 285-322. MR 0283265 (44:498)
  • [7] A. Erdelyi, et al., Tables of integral transforms, vol. 2, McGraw-Hill, New York, 1954.
  • [8] Deborah Tepper Haimo, Generalized temperature functions, Duke Math. J. 33 (1966), 305-322. MR 0201924 (34:1802)
  • [9] I. I. Hirschman and D. V. Widder, The convolution transform, Princeton Univ. Press, Princeton, N. J., 1955, pp. 173-209. MR 0073746 (17:479c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 44A15, 35C15

Retrieve articles in all journals with MSC: 44A15, 35C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0792814-X
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society