On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature

Author:
Jon G. Wolfson

Journal:
Trans. Amer. Math. Soc. **290** (1985), 627-646

MSC:
Primary 53C42; Secondary 58E20

DOI:
https://doi.org/10.1090/S0002-9947-1985-0792816-3

MathSciNet review:
792816

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper studies minimal surfaces in Kähler manifolds of constant holomorphic sectional curvature using the technique of the moving frame. In particular, we provide a classification of the minimal two-spheres in , complex projective -space, equipped with the Fubini-Study metric. This classification can be described as follows: To each holomorphic curve in classically there is associated a particular framing of called the Frenet frame. Each element of the Frenet frame induces a minimal surface in . The classification theorem states that all minimal surfaces of topological type of the two-sphere occur in this manner. The theorem is proved using holomorphic differentials that occur naturally on minimal surfaces in Kähler manifolds of constant holomorphic sectional curvature together with the Riemann-Roch Theorem.

**[1]**R. L. Bryant,*Every compact Riemann surface may be immersed conformally and minimally into*, J. Differential Geom.**17**(1982), 455-473. MR**679067 (84a:53062)****[2]**E. Calabi,*Minimal immersions of surfaces in Euclidean spheres*, J. Differential Geom.**1**(1967), 111-125. MR**0233294 (38:1616)****[3]**-,*Quelques applications de l'analyse complexe aux surfaces d'aire minima*, Topics in Complex Manifolds, University of Montreal, 1967, pp. 59-81.**[4]**S. S. Chern,*On minimal spheres in the four sphere*, Studies and Essays presented to Y. W. Chen, Taiwan, 1970, pp. 137-150; also, Selected Papers, Springer-Verlag, New York, 1978, pp. 421-434. MR**0278205 (43:3936)****[5]**-,*On the minimal immersion of the two-sphere in a space of constant curvature*, Problems in Analysis, Princeton Univ. Press, Princeton, N. J., 1970, pp. 27-40. MR**0362151 (50:14593)****[6]**S. S. Chern, M. J. Cowen and A. L. Vitter,*Frenet frames along holomorphic curves*, Proc. Conf. on Value Distribution Theory, Tulane University, 1974, pp. 191-203. MR**0361170 (50:13616)****[7]**S. S. Chern and J. G. Wolfson,*Minimal surfaces by moving frames*, Amer. J. Math.**105**(1983), 59-83. MR**692106 (84i:53056)****[8]**A. M. Din and W. J. Zakrzewski,*General classical solutions in the**model*, Nuclear Phys. B**174**(1980), 397-406. MR**591620 (82f:81041)****[9]**J. Eells and J. C. Wood,*Harmonic maps from surfaces to complex projective spaces*, Advances in Math.**49**(1983), 217-263. MR**716372 (85f:58029)****[10]**J. G. Wolfson,*Minimal surfaces in complex manifolds*, Ph.D. Thesis, University of California, Berkeley, 1982.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
53C42,
58E20

Retrieve articles in all journals with MSC: 53C42, 58E20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1985-0792816-3

Article copyright:
© Copyright 1985
American Mathematical Society