Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Solving semilinear partial differential equations with probabilistic potential theory

Authors: Joseph Glover and P. J. McKenna
Journal: Trans. Amer. Math. Soc. 290 (1985), 665-681
MSC: Primary 35J60; Secondary 35K55, 60J45
MathSciNet review: 792818
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Techniques of probabilistic potential theory are applied to solve $ - Lu + f(u) = \mu $, where $ \mu $ is a signed measure, $ f$ a (possibly discontinuous) function and $ L$ a second order elliptic or parabolic operator on $ {R^d}$ or, more generally, the infinitesimal generator of a Markov process. Also formulated are sufficient conditions guaranteeing existence of a solution to a countably infinite system of such equations.

References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 0125307
  • [2] Walter Allegretto, Nonnegative solutions for a weakly nonlinear elliptic equations, Canad. J. Math. 36 (1984), no. 1, 71–83. MR 733708, 10.4153/CJM-1984-006-4
  • [3] Pierre Baras and Michel Pierre, Singularités éliminables d’équations elliptiques semi-linéaires, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9, 519–522 (French, with English summary). MR 685014
  • [4] Philippe Benilan, Haim Brezis, and Michael G. Crandall, A semilinear equation in 𝐿¹(𝑅^{𝑁}), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 4, 523–555. MR 0390473
  • [5] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
  • [6] H. Brezis, Semilinear equations in 𝑅^{𝑁} without condition at infinity, Appl. Math. Optim. 12 (1984), no. 3, 271–282. MR 768633, 10.1007/BF01449045
  • [7] Haïm Brézis and Walter A. Strauss, Semi-linear second-order elliptic equations in 𝐿¹, J. Math. Soc. Japan 25 (1973), 565–590. MR 0336050
  • [8] Kai Lai Chung, Lectures from Markov processes to Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 249, Springer-Verlag, New York-Berlin, 1982. MR 648601
  • [9] C. Dellacherie, Potentiels de Green et fonctionnelles additives, Séminaire de Probabilités, IV (Univ. Strasbourg, 1968/69) Springer, Berlin, 1970, pp. 73–75. Lecture Notes in Math., Vol. 124 (French). MR 0293720
  • [10] Claude Dellacherie and Paul-André Meyer, Probabilités et potentiel. Chapitres V à VIII, Revised edition, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], vol. 1385, Hermann, Paris, 1980 (French). Théorie des martingales. [Martingale theory]. MR 566768
  • [11] Ronald K. Getoor, Markov processes: Ray processes and right processes, Lecture Notes in Mathematics, Vol. 440, Springer-Verlag, Berlin-New York, 1975. MR 0405598
  • [12] Ronald K. Getoor, Multiplicative functionals of dual processes, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 2, 43–83 (English, with French summary). MR 0331529
  • [13] Kiyoshi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Die Grundlehren der Mathematischen Wissenschaften, Band 125, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-New York, 1965. MR 0199891
  • [14] Wei Ming Ni, On the elliptic equation Δ𝑢+𝐾(𝑥)𝑢^{(𝑛+2)/(𝑛-2)}=0, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493–529. MR 662915, 10.1512/iumj.1982.31.31040
  • [15] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1971/72), 979–1000. MR 0299921
  • [16] Barry Simon, Functional integration and quantum physics, Pure and Applied Mathematics, vol. 86, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 544188
  • [17] Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
  • [18] W. Walter, Differential inequalities, Springer-Verlag, Berlin, Heidelberg and New York, 1967.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J60, 35K55, 60J45

Retrieve articles in all journals with MSC: 35J60, 35K55, 60J45

Additional Information

Article copyright: © Copyright 1985 American Mathematical Society