Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Unstable ground state of nonlinear Klein-Gordon equations


Author: Jalal Shatah
Journal: Trans. Amer. Math. Soc. 290 (1985), 701-710
MSC: Primary 35L70; Secondary 35J60, 35Q20
MathSciNet review: 792821
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the instability of the ground state, i.e. least energy steady-state solution of nonlinear Klein-Gordon equations with space dimension $ n \geqslant 3$.


References [Enhancements On Off] (What's this?)

  • [1] D. L. T. Anderson, J. Math. Phys. 12 (1971), 945-952.
  • [2] H. Berestycki and T. Cazenave (to appear).
  • [3] G. H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Mathematical Phys. 5 (1964), 1252–1254. MR 0174304
  • [4] Robert Glassey and Masayoshi Tsutsumi, On uniqueness of weak solutions to semilinear wave equations, Comm. Partial Differential Equations 7 (1982), no. 2, 153–195. MR 646135, 10.1080/03605308208820221
  • [5] Clayton Keller (to appear).
  • [6] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), no. 3-4, 273–303. MR 0402291
  • [7] Jalal Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys. 91 (1983), no. 3, 313–327. MR 723756
  • [8] Walter A. Strauss, On weak solutions of semi-linear hyperbolic equations, An. Acad. Brasil. Ci. 42 (1970), 645–651. MR 0306715
  • [9] Walter A. Strauss, Nonlinear invariant wave equations, Invariant wave equations (Proc. “Ettore Majorana” Internat. School of Math. Phys., Erice, 1977) Lecture Notes in Phys., vol. 73, Springer, Berlin-New York, 1978, pp. 197–249. MR 498955
  • [10] Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162. MR 0454365
  • [11] Walter A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math. 19 (1966), 543–551. MR 0205121
  • [12] H. Berestycki and P. L. Lions, Existence d'onde solitaires dans les problèmes non-linéaires du type Klein-Gordon, Arch. Rational Mech. Anal. 82 (1983), 316-338.
  • [13] Thierry Cazenave, Uniform estimates for solutions of nonlinear Klein-Gordon equations, J. Funct. Anal. 60 (1985), no. 1, 36–55. MR 780103, 10.1016/0022-1236(85)90057-6

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35L70, 35J60, 35Q20

Retrieve articles in all journals with MSC: 35L70, 35J60, 35Q20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1985-0792821-7
Article copyright: © Copyright 1985 American Mathematical Society