Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Unstable ground state of nonlinear Klein-Gordon equations


Author: Jalal Shatah
Journal: Trans. Amer. Math. Soc. 290 (1985), 701-710
MSC: Primary 35L70; Secondary 35J60, 35Q20
DOI: https://doi.org/10.1090/S0002-9947-1985-0792821-7
MathSciNet review: 792821
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the instability of the ground state, i.e. least energy steady-state solution of nonlinear Klein-Gordon equations with space dimension $ n \geqslant 3$.


References [Enhancements On Off] (What's this?)

  • [1] D. L. T. Anderson, J. Math. Phys. 12 (1971), 945-952.
  • [2] H. Berestycki and T. Cazenave (to appear).
  • [3] G. H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5 (1964), 1252-1254. MR 0174304 (30:4510)
  • [4] R. Glassey and M. Tsutsumi, On uniqueness of weak solutions to semilinear wave equations, Comm. Partial Differential Equations 7 (1982), 153-195. MR 646135 (83g:35065)
  • [5] Clayton Keller (to appear).
  • [6] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), 272-303. MR 0402291 (53:6112)
  • [7] J. M. Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys. 91 (1983), 313-327. MR 723756 (84m:35111)
  • [8] W. A. Strauss, An. Acad. Brasil. Ciênc. 42 (1970), 645-651. MR 0306715 (46:5837)
  • [9] -, Nonlinear invariant waves equations, Lecture Notes in Phys., vol. 73, Springer, Berlin, Heidelberg, and New York, 1978, pp. 197-249. MR 498955 (80b:35090)
  • [10] -, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162. MR 0454365 (56:12616)
  • [11] -, On continuity of functions with values in various Banach spaces, Pacific J. Math. 19 (1966), 543-551. MR 0205121 (34:4956)
  • [12] H. Berestycki and P. L. Lions, Existence d'onde solitaires dans les problèmes non-linéaires du type Klein-Gordon, Arch. Rational Mech. Anal. 82 (1983), 316-338.
  • [13] T. Cazenave, Uniform estimates of solutions to nonlinear Klein-Gordon equations, Univ. Pierre et Marie Curie Lab. d'Analyse Numérique, preprint. MR 780103 (86f:35157)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35L70, 35J60, 35Q20

Retrieve articles in all journals with MSC: 35L70, 35J60, 35Q20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0792821-7
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society