On the group a cyclic group of prime order

Authors:
M. Maller and J. Whitehead

Journal:
Trans. Amer. Math. Soc. **290** (1985), 725-733

MSC:
Primary 58F09; Secondary 20C99

MathSciNet review:
792823

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We extend the definition of the obstruction group in the case where is a cyclic group of prime order. We show that an endomorphism of a free -module is a direct summand of a virtual permutation if its characteristic polynomial has the appropriate form. Among these endomorphisms the virtual permutations are detected by . The main application is in detecting Morse-Smale isotopy classes.

**[1]**Charles W. Curtis and Irving Reiner,*Methods of representation theory. Vol. I*, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders; Pure and Applied Mathematics; A Wiley-Interscience Publication. MR**632548****[2]**John Franks and Carolyn Narasimhan,*The periodic behavior of Morse-Smale diffeomorphisms*, Invent. Math.**48**(1978), no. 3, 279–292. MR**508988**, 10.1007/BF01390247**[3]**John Franks and Michael Shub,*The existence of Morse-Smale diffeomorphisms*, Topology**20**(1981), no. 3, 273–290. MR**608601**, 10.1016/0040-9383(81)90003-3**[4]**H. W. Lenstra Jr.,*Grothendieck groups of abelian group rings*, J. Pure Appl. Algebra**20**(1981), no. 2, 173–193. MR**601683**, 10.1016/0022-4049(81)90091-8**[5]**Michael Maller,*Fitted diffeomorphisms of nonsimply connected manifolds*, Topology**19**(1980), no. 4, 395–410. MR**584563**, 10.1016/0040-9383(80)90022-1**[6]**Michael Maller,*Algebraic problems arising from Morse-Smale dynamical systems*, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 512–521. MR**1691597**, 10.1007/BFb0061432**[7]**Michael Maller and Jennifer Whitehead,*Virtual permutations of 𝑍[𝑍ⁿ] complexes*, Proc. Amer. Math. Soc.**90**(1984), no. 1, 162–166. MR**722437**, 10.1090/S0002-9939-1984-0722437-4**[8]**M. Shub,*Morse-Smale diffeomorphisms are unipotent on homology*, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 489–491. MR**0331439****[9]**M. Shub and D. Sullivan,*Homology theory and dynamical systems*, Topology**14**(1975), 109–132. MR**0400306****[10]**Richard G. Swan,*𝐾-theory of finite groups and orders*, Lecture Notes in Mathematics, Vol. 149, Springer-Verlag, Berlin-New York, 1970. MR**0308195**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F09,
20C99

Retrieve articles in all journals with MSC: 58F09, 20C99

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1985-0792823-0

Keywords:
Morse-Smale diffeomorphism,
virtual permutation,
group rings

Article copyright:
© Copyright 1985
American Mathematical Society