Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Variants of the maximal double Hilbert transform


Author: Elena Prestini
Journal: Trans. Amer. Math. Soc. 290 (1985), 761-771
MSC: Primary 42B25; Secondary 42B05, 44A15, 47G05
DOI: https://doi.org/10.1090/S0002-9947-1985-0792826-6
MathSciNet review: 792826
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the boundedness on $ {L_p}({T^2})$, $ 1 < p < \infty $, of two variants of the double Hilbert transform and maximal double Hilbert transform. They have an application to a problem of almost everywhere convergence of double Fourier series.


References [Enhancements On Off] (What's this?)

  • [1] L. Carleson, On the convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157. MR 0199631 (33:7774)
  • [2] C. Fefferman, Pointwise convergence of Fourier series, Ann. of Math. (2) 98 (1973), 551-572. MR 0340926 (49:5676)
  • [3] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), 117-143. MR 664621 (84d:42023)
  • [4] R. Hunt, On the convergence of Fourier series, Proc. Conf. on Orthogonal Expansions and their Continuous Analogues, Carbondale Press, Carbondale, Ill., 1968. MR 0238019 (38:6296)
  • [5] E. Prestini, Uniform estimates for families of singular integrals and double Fourier series, J. Austral. Math. (to appear). MR 846766 (87k:42014)
  • [6] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971. MR 0304972 (46:4102)
  • [7] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)
  • [8] P. Sjölin, Convergence almost everywhere of certain singular integrals and multiple Fourier series, Ark. Mat. 9 (1971), 65-90. MR 0336222 (49:998)
  • [9] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. MR 0284802 (44:2026)
  • [10] A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), 97-101. MR 0420115 (54:8132)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B25, 42B05, 44A15, 47G05

Retrieve articles in all journals with MSC: 42B25, 42B05, 44A15, 47G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0792826-6
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society