Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Changing the depth of an ordered set by decomposition


Authors: E. C. Milner and K. Prikry
Journal: Trans. Amer. Math. Soc. 290 (1985), 773-785
MSC: Primary 03E05; Secondary 04A20, 06A05, 06A10
DOI: https://doi.org/10.1090/S0002-9947-1985-0792827-8
MathSciNet review: 792827
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The depth of a partially ordered set $ \langle P, < \rangle $ is the smallest ordinal $ \gamma $ such that $ \langle P, < \rangle $ does not embed $ {\gamma ^\ast}$. The width of $ \langle P, < \rangle $ is the smallest cardinal number $ \mu $ such that there is no antichain of size $ \mu + 1$ in $ P$. We show that if $ \gamma > \omega $ and $ \gamma $ is not an infinite successor cardinal, then any partially ordered set of depth $ \gamma $ can be decomposed into $ \operatorname{cf}(\vert\gamma \vert)$ parts so that the depth of each part is strictly less than $ \gamma $. If $ \gamma = \omega $ or if $ \gamma $ is an infinite successor cardinal, then for any infinite cardinal $ \lambda $ there is a linearly ordered set of depth $ \gamma $ such that for any $ \lambda $-decomposition one of the parts has the same depth $ \gamma $. These results are used to solve an analogous problem about width. It is well known that, for any cardinal $ \lambda $, there is a partial order of width $ \omega $ which cannot be split into $ \lambda $ parts of finite width. We prove that, for any cardinal $ \lambda $ and any infinite cardinal $ \nu $, there is a partial order of width $ {\nu ^ + }$ which cannot be split into $ \lambda $ parts of smaller width.


References [Enhancements On Off] (What's this?)

  • [1] J. Baumgartner and A. Hajnal, A proof (involving Martin's axiom) of a partition relation, Fund. Math. 78 (1973), 193-203. MR 0319768 (47:8310)
  • [2] R. Bonnet and M. Pouzet, Linear extensions of ordered sets, Ordered Sets (I. Rival, ed.), Reidel, Dordrecht, 1982, pp. 125-170. MR 661293 (83h:06004)
  • [3] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51 (1950), 161-166. MR 0032578 (11:309f)
  • [4] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610. MR 0004862 (3:73a)
  • [5] P. Erdős and A. Hajnal, On decompositions of graphs, Acta. Math. Acad. Sci. Hungar. 18 (1967), 359-377. MR 0223261 (36:6309)
  • [6] P. E. Erdős, A. Hajnal, A. Máté and R. Rado, Combinatorial set theory, partition relations for cardinals, North-Holland, Amsterdam, 1984. MR 795592 (87g:04002)
  • [7] F. Galvin, On a partition theorem of Baumgartner and Hajnal, Colloq. Math. Soc. János Bolyai 10, North-Holland, Amsterdam, 1973, pp. 711-729. MR 0376355 (51:12531)
  • [8] T. Jech, Set theory, Academic Press, New York, 1978. MR 506523 (80a:03062)
  • [9] E. C. Milner and K. Prikry, The cofinality of a partially ordered set, Proc. London Math. Soc. (3) 46 (1983), 454-470. MR 699097 (84m:06004)
  • [10] E. C. Milner and R. Rado, The pigeon-hole principle for ordinal numbers, Proc. London Math. Soc. (3) 15 (1965), 750-768. MR 0190003 (32:7419)
  • [11] M. A. Perles, On Dilworth's theorem in the infinite case, Israel J. Math. 1 (1963), 108-109. MR 0168497 (29:5759)
  • [12] S. Todorčević, Private communication.
  • [13] -, Partition relations for partially ordered sets, Acta Math. (to appear). MR 793235 (87d:03126)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03E05, 04A20, 06A05, 06A10

Retrieve articles in all journals with MSC: 03E05, 04A20, 06A05, 06A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0792827-8
Keywords: Partial order, depth, width, extendable ordinal, partition relation, graph, category
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society