The determinant of the Eisenstein matrix and Hilbert class fields

Authors:
I. Efrat and P. Sarnak

Journal:
Trans. Amer. Math. Soc. **290** (1985), 815-824

MSC:
Primary 11F41

DOI:
https://doi.org/10.1090/S0002-9947-1985-0792829-1

MathSciNet review:
792829

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the determinant of the Eisenstein matrix associated to the Hilbert-Blumenthal modular group , and express it in terms of the zeta function of the Hilbert class field of .

**[1]**P. Cohen and P. Sarnak,*Discrete groups and geometry*(to appear).**[2]**I. Efrat,*The Selberg trace formula for*, Mem. Amer. Math. Soc. (to appear). MR**874084 (88e:11041)****[3]**E. Hecke,*Lectures on the theory of algebraic numbers*, Springer-Verlag, 1981. MR**638719 (83m:12001)****[4]**D. Hejhal,*The Selberg trace formula for*, vol. 2, Lecture Notes in Math., vol. 1001, Springer-Verlag, 1983. MR**711197 (86e:11040)****[5]**M. Huxley,*Scattering matrices for congruence subgroups*, preprint, 1983. MR**803366 (87e:11072)****[6]**S. Lang,*Algebraic number theory*, Addison-Wesley, 1970. MR**0282947 (44:181)****[7]**P. Lax and R. Phillips,*Scattering theory for automorphic forms*, Ann. of Math. Studies, no. 87, Princeton Univ. Press, Princeton, N. J., 1976. MR**0217440 (36:530)****[8]**P. Sarnak,*The arithmetic and geometry of some hyperbolic three manifolds*, Acta Math.**151**(1983). MR**723012 (85d:11061)****[9]**A. Terras,*Harmonic analysis on symmetric spaces with applications to number theory*(to appear).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11F41

Retrieve articles in all journals with MSC: 11F41

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1985-0792829-1

Article copyright:
© Copyright 1985
American Mathematical Society