Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The determinant of the Eisenstein matrix and Hilbert class fields


Authors: I. Efrat and P. Sarnak
Journal: Trans. Amer. Math. Soc. 290 (1985), 815-824
MSC: Primary 11F41
DOI: https://doi.org/10.1090/S0002-9947-1985-0792829-1
MathSciNet review: 792829
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the determinant of the Eisenstein matrix associated to the Hilbert-Blumenthal modular group $ {\text{PSL}_2}({\mathcal{O}_k})$, and express it in terms of the zeta function of the Hilbert class field of $ K$.


References [Enhancements On Off] (What's this?)

  • [1] P. Cohen and P. Sarnak, Discrete groups and geometry (to appear).
  • [2] I. Efrat, The Selberg trace formula for $ {\text{PSL}_2}{({\mathbf{R}})^n}$, Mem. Amer. Math. Soc. (to appear). MR 874084 (88e:11041)
  • [3] E. Hecke, Lectures on the theory of algebraic numbers, Springer-Verlag, 1981. MR 638719 (83m:12001)
  • [4] D. Hejhal, The Selberg trace formula for $ {\text{PSL}_2}({\mathbf{R}})$, vol. 2, Lecture Notes in Math., vol. 1001, Springer-Verlag, 1983. MR 711197 (86e:11040)
  • [5] M. Huxley, Scattering matrices for congruence subgroups, preprint, 1983. MR 803366 (87e:11072)
  • [6] S. Lang, Algebraic number theory, Addison-Wesley, 1970. MR 0282947 (44:181)
  • [7] P. Lax and R. Phillips, Scattering theory for automorphic forms, Ann. of Math. Studies, no. 87, Princeton Univ. Press, Princeton, N. J., 1976. MR 0217440 (36:530)
  • [8] P. Sarnak, The arithmetic and geometry of some hyperbolic three manifolds, Acta Math. 151 (1983). MR 723012 (85d:11061)
  • [9] A. Terras, Harmonic analysis on symmetric spaces with applications to number theory (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F41

Retrieve articles in all journals with MSC: 11F41


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0792829-1
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society