Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On derivations annihilating a maximal abelian subalgebra


Author: Geoffrey L. Price
Journal: Trans. Amer. Math. Soc. 290 (1985), 843-850
MSC: Primary 46L40; Secondary 46L55
DOI: https://doi.org/10.1090/S0002-9947-1985-0792832-1
MathSciNet review: 792832
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{A}$ be an $ {\text{AF}}\;{C^\ast}$-algebra, and let $ \delta $ be a closed $ \ast $-derivation which annihilates the maximal abelian subalgebra $ \mathcal{C}$ of diagonal elements of $ \mathcal{A}$. Then we show that $ \delta $ generates an approximately inner $ {C^\ast}$-dynamics on $ \mathcal{A}$, and that $ \delta $ is a commutative $ \ast $-derivation. Any two closed $ \ast$-derivations vanishing on $ \mathcal{C}$ are shown to be strongly commuting. More generally, if $ \delta $ is a semiderivation on $ \mathcal{A}$ which vanishes on $ \mathcal{C}$, we prove that $ \delta $ is a generator of a semigroup of strongly positive contractions of $ \mathcal{A}$.


References [Enhancements On Off] (What's this?)

  • [1] O. Bratteli and P. E. T. Jørgensen, Unbounded derivations tangential to compact groups of automorphisms, J. Funct. Anal. 48 (1982), 107-133. MR 671318 (84b:46073)
  • [2] -, Unbounded $ \ast $-derivations and infinitesimal generators on operator algebras, Proc. Sympos. Pure Math., vol. 38, part 2, Amer. Math. Soc., Providence, R.I., 1980, pp. 353-365.
  • [3] O. Bratteli, P. E. T. Jørgensen, A. Kishimoto and D. W. Robinson, A $ {C^\ast}$-algebraic Schoenberg theorem, Australian National University, 1983, preprint.
  • [4] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, vol. I, Springer-Verlag, New York, 1979. MR 545651 (81a:46070)
  • [5] G. Elliott, Derivations of matroid $ {C^\ast}$-algebras, Invent. Math. 9 (1970), 253-269. MR 0265948 (42:857)
  • [6] A. Kishimoto, Dissipations and derivations, Comm. Math. Phys. 47 (1976), 25-32. MR 0402516 (53:6335)
  • [7] D. Evans and H. Hanche-Olsen, The generators of positive semigroups, J. Funct. Anal. 32 (1979), 207-212. MR 534674 (80h:47049)
  • [8] R. T. Powers and G. Price, Derivations vanishing on $ S(\infty )$, Comm. Math. Phys. 84 (1982), 439-447. MR 667752 (83k:46056)
  • [9] S. Sakai, On commutative normal $ \ast $-derivations, Comm. Math. Phys. 43 (1975), 39-40. MR 0372631 (51:8838)
  • [10] S. Stratila and D. Voiculescu, Representations of $ AF$-algebras and of the group $ U(\infty )$, Lecture Notes in Math., vol. 486, Springer-Verlag, Berlin and New York, 1975. MR 0458188 (56:16391)
  • [11] A. Kumjian, Preliminary algebras arising from local homeomorphisms, Math. Scand. 52 (1983). MR 702958 (85b:46078)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L40, 46L55

Retrieve articles in all journals with MSC: 46L40, 46L55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0792832-1
Keywords: Derivation, $ {\text{AF}}$-algebra, maximal abelian subalgebra, approximately inner, generator
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society